MedPath

Delayed Cord Clamping and Infant Brain Study

Not Applicable
Completed
Conditions
Iron Deficiency
Registration Number
NCT01620008
Lead Sponsor
University of Rhode Island
Brief Summary

The purpose of this study is to determine if delaying cord clamping at the birth of term infants effects the early brain development (myelin deposition)as determined by quantitative MRI at 4 and 10 months and developmental testing at 4, 10 and 24 months. This study will help to establish a scientific basis for the timing of cord clamping with reference to brain development.

Detailed Description

The current obstetrical practice at birth in the United States is that the umbilical cord of the infant is clamped immediately. When immediate clamping occurs, 20 to 40% of the fetal-placental blood volume is left behind in the placenta. This blood contains enough iron-rich red blood cells to meet the infant's iron needs for the first 4 to 6 months of life. Delaying cord clamping has been shown to increase early iron stores without contributing to adverse outcomes. Early iron sufficiency is essential for long term neurologic health. Iron deficiency in infancy adversely affects cognitive, motor, socio-emotional, and behavioral development. Human and animal studies have shown that inadequate iron stores in early infancy have an irreversible negative impact on the developing brain with deficits persisting even after iron levels have been restored by iron supplementation. Iron is an essential component of myelination which is critical for normal brain development and function. Myelination, which peaks during the first year of life, establishes and maintains efficient communication between the discrete regions of the brain. Abnormal myelination underlies a variety of childhood developmental disorders including conditions such as autism.

The gap is that the effect of increased iron stores from delayed cord clamping on myelination and neurodevelopment during early childhood is unknown. Our hypothesis is that placental transfusion affects myelination and early childhood development in the following ways: 1) placental transfusions lead to increased blood volume (BV) and red cell volume (RCV) at birth; 2) increased RCV results in more available iron for early body iron stores; 3) increased body iron stores provide essential iron supply for optimal myelination; 4) optimal myelination results in improved developmental and cognitive performance. We propose a randomized controlled longitudinal (birth to 24 months) trial of 128 infants to measure the effect of placental transfusion on the structure and function of the developing brain. We will use a non-invasive neuroimaging technique to measure myelin acquisition over time and to correlate the findings with iron stores and developmental outcomes. Enrolled women will be randomized at birth to the immediate cord clamping group or the delayed cord clamping group. We will assess infants for iron sufficiency and myelin deposition at 4 and 10 months and evaluate developmental outcomes at 4, 10, and 24 months. This study will help to establish a scientific basis for the timing of cord clamping with reference to brain development. The innovation of this study is in the simplicity of delaying cord clamping combined with the use of a new method of MRI that can quantify myelin deposition. This low-tech change in a clinical practice has the potential to reduce iron deficiency and improve developmental outcomes. If delayed cord clamping demonstrates protective effects for optimal development, changing practice will translate into a large cost savings improving lifetime productivity beneficial to society as a whole.

Recruitment & Eligibility

Status
COMPLETED
Sex
Female
Target Recruitment
106
Inclusion Criteria
  • women in the third trimester with:
  • singleton pregnancy
  • planning to breastfeed for six months
  • English speaking
  • planning vaginal birth
Exclusion Criteria
  • major medical or obstetrical complications
  • Intrauterine growth restriction
  • chorioamnionitis
  • familial learning disability
  • major psychiatric or depressive illness
  • fetal congenital anomalies

Study & Design

Study Type
INTERVENTIONAL
Study Design
PARALLEL
Primary Outcome Measures
NameTimeMethod
Brain Myelin Volume4 months of age

At 4 months of age, term infants exposed to delayed cord clamping will have greater myelin content when compared to infants exposed to immediate cord clamping

Secondary Outcome Measures
NameTimeMethod
Ferritin levels4 months of age

Term infants exposed to delayed cord clamping will have higher ferritin levels when compared to infants with immediate cord clamping.

Trial Locations

Locations (1)

Women & Infants Hospital of Rhode Island

🇺🇸

Providence, Rhode Island, United States

Women & Infants Hospital of Rhode Island
🇺🇸Providence, Rhode Island, United States

MedPath

Empowering clinical research with data-driven insights and AI-powered tools.

© 2025 MedPath, Inc. All rights reserved.