MedPath

Fall Risk Assessment Using Hybrid Machine Learning and Deep Learning Approaches and a Novel Posturography

Conditions
Fall
Age Problem
Registration Number
NCT05308563
Lead Sponsor
National Taiwan University Hospital
Brief Summary

The purpose of this project is to combine a novel posturogrpahy based on HTC VIVE trackers and hybrid machine learning and deep learning algorithms to establish a set of simple, convenient and valid fall risk assessment tool. This observational and follow up study will community elderly aged over 60 years old. The investigators will collect demographic data, questionnaire surveys, traditional balance tests and the tracker-based posturography to obtain the trunk stability parameters in different standing task. The fall risk will be classified according to self-reported falls n the past one year and verified in a 6-month follow up. The investigators will evaluate the performance of different hybrid machine learning and deep learning algorithm to extract the important features of multiple posturographic parameters and select an optimal model. The investigators will use the receiver operating characteristic curve analysis to compute the sensitivity, specificity and accuracy of different algorithms for risk classification and also compare the performance with traditional balance assessment tools.

Detailed Description

The purpose of this project is to combine a novel posturogrpahy based on HTC VIVE trackers and hybrid machine learning and deep learning algorithms to establish a set of simple, convenient and valid fall risk assessment tool. This observational and follow up study will community elderly aged over 60 years old. The investigators will collect demographic data, questionnaire surveys, traditional balance tests (Berg Balance scale, Timed-up-and-go, 30s-sit-to-stand, four-stage balance tests) and a tracker-based posturography to obtain the trunk stability parameters in different standing task. The fall risk will be classified according to self-reported falls in the past one year and verified in a 6-month follow up.

The investigators will evaluate the performance of different hybrid machine learning and deep learning algorithm to extract the important features of multiple posturographic parameters and select an optimal model. The investigators will use the receiver operating characteristic curve analysis to compute the sensitivity, specificity and accuracy of different algorithms for risk classification and also compare the performance with traditional balance assessment tools. The investigators will evaluate the correlation of these posturographic features and data obtained by other methods. Risk factors of previous falls and future falls will also analyzed.

Recruitment & Eligibility

Status
UNKNOWN
Sex
All
Target Recruitment
500
Inclusion Criteria
  • can walk in the household without device independently
Read More
Exclusion Criteria
  • with terminal disease
  • with cognitive impairment to follow verbal instruction
  • with neurological conditions that are associated with leg weakness
  • with significant visual impairment that interferes with daily living and walking
Read More

Study & Design

Study Type
OBSERVATIONAL
Study Design
Not specified
Primary Outcome Measures
NameTimeMethod
Number of fall events6 months

self-reported fall events according to a followup questionnaire and defined as the sudden, involuntary transfer of body to the ground and at a lower level than the previous one

Secondary Outcome Measures
NameTimeMethod
© Copyright 2025. All Rights Reserved by MedPath