Diet and Medical Therapy Versus Bariatric Surgery in Type 2 Diabetes
- Conditions
- Type 2 Diabetes
- Interventions
- Behavioral: anti-diabetic drugs and behavioral suggestions
- Registration Number
- NCT00888836
- Lead Sponsor
- Catholic University of the Sacred Heart
- Brief Summary
It is generally held that ß-cell function is irreversibly lost already at the time the disease manifests itself and thereafter continues to decline linearly with time. Several studies, however, have documented the possibility that ß-cell function may be restored, at least partially, in type 2 diabetes. Of major relevance to the issue of ß-cell recovery in diabetes are the following findings:
* bariatric surgery in morbidly obese patients with type 2 diabetes can restore euglycaemia, the acute insulin response to glucose and insulin sensitivity;
* recent studies have reported that diabetic subjects return to euglycaemia and normal insulin levels within days after surgery, long before a significant weight loss has occurred; and
* whereas gastric bypass (GBP) improves insulin sensitivity in proportion to weight loss, bilio-pancreatic diversion (BPD) improves insulin action out of proportion to weight loss, i.e., it normalizes it at a time when patients are still markedly obese. Because RYGB is a predominantly restrictive procedure involving the foregut, whereas BPD is a predominantly malabsorptive procedure involving the distal gastro-intestinal (GI) tract, these findings suggest that the control of both insulin action and ß-cell function is influenced by signals originating from the GI tract.
The principal aim of this study is to verify the effect on type 2 diabetes mellitus (T2DM) of GBP and BPD, the two operations which have shown specific actions on glucose homeostasis control, in type 2 diabetic patients with BMI \> 35 kg/m2, and to compare this effect with matched T2DM control patients receiving the standard of medical care.
- Detailed Description
ß-cell dysfunction and insulin resistance are the main pathophysiological defects responsible for the development of hyperglycaemia \[1\]. Both these defects predict incident diabetes in high-risk subjects \[2\]. Insulin resistance per se is not sufficient to cause hyperglycaemia; mild degrees of ß-cell dysfunction, on the other hand, may not result in diabetic hyperglycaemia in insulin sensitive individuals. It is only when impaired ß-cell function occurs in the background of insulin resistance that plasma glucose levels begin to rise (as is the case of individuals with impaired glucose tolerance \[3\]). The occurrence of postprandial, or day-long, hyperglycaemia further compromises both ß-cell function and insulin action, a phenomenon called glucose toxicity \[4-6\]. As a consequence, the vast majority of patients with established type 2 diabetes present, in addition to marked insulin resistance, a clear defect in ß-cell function, which is generally proportional to the severity of the hyperglycaemia \[7\]. Of note is that the extent of ß-cell dysfunction in type 2 patients may be misjudged when ß-cell function is inferred from simple measurements of fasting or postprandial plasma insulin concentrations. In fact, insulin secretion increases (in non-linear manner \[8\]) in insulin resistant individuals, a compensatory response aimed at maintaining glucose tolerance. As a consequence, the absolute insulin hypersecretion (particularly in the fasting state) commonly found in patients with IGT or diabetes masks the underlying defect in the ability of the ß-cell to cope with nutrient stimulation.
It is generally held that ß-cell function is irreversibly lost already at the time the disease manifests itself and thereafter continues to decline linearly with time. Several studies, however, have documented the possibility that ß-cell function may be restored, at least partially, in type 2 diabetes \[9-13\]. Of major relevance to the issue of ß-cell recovery in diabetes are the following findings: (a) bariatric surgery in morbidly obese patients with type 2 diabetes can restore euglycaemia, the acute insulin response to glucose \[14-17\] and insulin sensitivity \[18,19\]; (b) recent studies have reported that diabetic subjects return to euglycaemia and normal insulin levels within days after surgery, long before a significant weight loss has occurred \[20\]; and (c) whereas RYGB improves insulin sensitivity in proportion to weight loss, BPD improves insulin action out of proportion to weight loss, i.e., it normalises it at a time when patients are still markedly obese \[21\]. Because RYGB is a predominantly restrictive procedure involving the foregut whereas BPD is a predominantly malabsorptive procedure involving the distal GI tract, these findings suggest that the control of both insulin action and ß-cell function is influenced by signals originating from the GI tract.
Some studies have investigated the hormonal changes that follow bariatric surgery. In most cases, however, clinical testing was performed after significant weight reduction, thereby making it difficult to establish whether any observed hormonal effect was the cause or the consequence of weight loss and diabetes resolution. Recently, it has been reported that RYGB induces rapid normalisation of blood glucose and insulin levels in concomitance with significant changes of the levels of hormones involved in the regulation of glucose metabolism (ACTH, leptin and GIP) in the early postoperative period \[22\]. It has been proposed that the incretins could be one of the key mediators of the anti-diabetic effects of certain types of bariatric surgery. Previous data have shown that the significant weight loss observed after various bariatric procedures was accompanied by improvement of diabetes control and increased GLP-1 levels. However, most studies were cross sectional \[23,24\], reported fasting \[25\] rather than post-prandial GLP-1 levels, and compared various types of surgery such as jejuno-ileal bypass (JIB) \[26,27\] or bilio-pancreatic diversion (BPD) \[27\], often leading to inconclusive results. Data on fasting GIP levels after bariatric surgery are inconsistent, reporting either a decrease \[25,28,29\] or an increase \[23,24\]. GLP-1 levels increase after a meal in patients after RY-GBP \[30\] or with oral glucose after BPD \[30\]. Meal-stimulated GIP levels have been reported to increase after JIB \[23\], or to decrease after GBP, JIB or BPD surgery \[26,29,31,32\]. None of these studies, however, measured GLP-1 and GIP simultaneously, reported the incretin levels and effect on insulin secretion (with the exception of the last quoted one, which reported both GIP and insulin response to meal markedly reduced after BPD), or was done in diabetic patients.
Some authors have suggested that an enhanced release of GLP-1, triggered by the earlier presentation of undigested food to lower segments of the bowel, might be involved in the glycaemic improvement consequent to bypass procedures for obesity surgery.
Collectively, these observations clearly suggest that there is a large margin for ß-cell recovery of function in type 2 diabetes and that different segments of the gut participate differentially in such recovery.
The primary end-points of the study are the differences in the proportions of patients reaching partial or complete remission of type 2 diabetes between conventional therapy and BPD or conventional therapy and RYGB.
In particular, according to Buse et al (Diabetes Care 2009; 32:2133-35) partial remission is defined as fasting glucose values of 100-125 mg/dl \[5.6-6.9 mmol/l\]) and HbA1c\<6.5%, of at least 1 year's duration in the absence of active pharmacologic therapy. Complete remission is referred to fasting glucose \<100 mg/dl \[5.6 mmol/l\]) and HbA1c in the normal range of at least 1 year's duration in the absence of active pharmacologic therapy.
Secondary endpoints Secondary endpoints include percentage change of fasting plasma glucose levels, glycated hemoglobin, weight, waist circumference, blood pressure, cholesterol, HDL-cholesterol and triglycerides, and hard cardiovascular risk.
Recruitment & Eligibility
- Status
- COMPLETED
- Sex
- All
- Target Recruitment
- 60
- patients with type 2 diabetes and BMI ≥35 kg.m-2
- age between 30 and 60 years
- duration of diabetes ≥ 5 years
- poor glycemic control (i.e., HbA1c ≥ 7.0%) in spite a medical antidiabetic therapy in accordance with good clinical practice (GCP)
- pregnancy
- medical conditions requiring acute hospitalisation
- severe diabetes complications or associated medical conditions (such as blindness, end-stage renal failure, liver cirrhosis, malignancy, chronic congestive heart failure)
- recent (within preceding 12 months) myocardial infarction, stroke or TIA
- unstable angina pectoris
- psychological conditions which may hamper patient's cooperation
- geographic inaccessibility
- any condition which, in the judgement of the Investigator, may make risky the participation in the study or bias the results
Study & Design
- Study Type
- INTERVENTIONAL
- Study Design
- PARALLEL
- Arm && Interventions
Group Intervention Description Med Ter3 anti-diabetic drugs and behavioral suggestions Type 2 diabetic subjects with BMI ≥ 35, poor glycemic control (HbA1c ≥ 7.0%) and diabetes duration ≥ 5 yearsundergo medical therapy
- Primary Outcome Measures
Name Time Method To assess the efficacy of bariatric surgery in inducing partial or total remission of type 2 diabetes mellitus, as compared to standard medical anti-diabetic care (STC). 10 years
- Secondary Outcome Measures
Name Time Method Secondary endpoints include percentage change of fasting plasma glucose levels, glycated hemoglobin, weight, waist circumference, blood pressure, cholesterol, HDL-cholesterol and triglycerides, hard cardiovascular risk and quality of life. 10 years
Trial Locations
- Locations (1)
Catholic University, Faculty of Medicine
🇮🇹Rome, Italy