Ophthalmic Multimodal AI-Assisted Medical Decision-Making
- Conditions
- Ocular Diseases
- Registration Number
- NCT06755190
- Lead Sponsor
- The Eye Hospital of Wenzhou Medical University
- Brief Summary
This is a multi-center, retrospective clinical study designed to evaluate the application and effectiveness of an AI-assisted medical decision support system, leveraging multimodal data fusion, in ophthalmic clinical practice.
- Detailed Description
Visual impairments significantly affect an individual's quality of life. Early screening, diagnosis, and treatment of ocular diseases are crucial for preventing the onset and progression of vision disorders. In clinical practice, ophthalmologists often need to integrate a wide range of patient data, including demographic information, medical history, biochemical markers such as blood glucose and lipid levels, risk factors, as well as various ophthalmic data, such as fundus images, OCT scans, and visual field tests, to make an accurate diagnosis and develop an appropriate treatment plan. In an era where precision and personalized medicine are at the forefront of healthcare, the early detection and diagnosis of eye diseases, as well as the selection of suitable diagnostic and therapeutic strategies at different stages of the disease, have become significant challenges in clinical settings. Recent advancements in medical imaging and analysis techniques have greatly enhanced the accuracy and effectiveness of ocular disease diagnosis. This study aims to develop an ophthalmic artificial intelligence-assisted decision-making system by integrating multimodal data from imaging and electronic medical records, in combination with deep learning techniques. The objective is to improve diagnostic accuracy, streamline clinical workflows, and provide more personalized treatment options for patients. Ultimately, this system seeks to enhance treatment outcomes and improve the overall quality of life for patients suffering from ocular diseases.
Recruitment & Eligibility
- Status
- RECRUITING
- Sex
- All
- Target Recruitment
- 5000000
1.All patients who have received treatment at multiple centers, including The Eye Hospital of Wenzhou Medical University, First Affiliated Hospital of Wenzhou Medical University, Second Affiliated Hospital of Wenzhou Medical University, ZhuHai Hospital, and Macau University of Science and Technology Hospital.
2.Availability of comprehensive electronic health records (EHR), including: Ophthalmic images (e.g., fundus photography, OCT, or slit-lamp images). Electronic medical records (e.g., diagnosis, treatment, and follow-up notes). Examination results (e.g., visual acuity, intraocular pressure, or laboratory tests). 3.Patients with a clear and confirmed diagnosis of one or more ocular diseases. 4.Patients with sufficient follow-up records to allow assessment of disease progression or prognosis, if applicable.
- All ophthalmology patients who have previously received treatment at the Department of Ophthalmology, the Eye Hospital of Wenzhou Medical University, First Affiliated Hospital of Wenzhou Medical University, Second Affiliated Hospital of Wenzhou Medical University, Zhuhai People's Hospital, and the University Hospital.
- Availability of comprehensive electronic health records (EHR), including: Ophthalmic images (e.g., fundus photography, OCT, or slit-lamp images). Electronic medical records (e.g., diagnosis, treatment, and follow-up notes). Examination results (e.g., visual acuity, intraocular pressure, or laboratory tests).
- Patients with a clear and confirmed diagnosis of one or more ocular diseases.
- Patients with sufficient follow-up records to allow assessment of disease progression or prognosis, if applicable.
- Incomplete or missing critical EHR components.
- Cases with ambiguous or unverified diagnoses that cannot be clearly categorized.
- Duplicated or redundant data from the same patient.
Study & Design
- Study Type
- OBSERVATIONAL
- Study Design
- Not specified
- Primary Outcome Measures
Name Time Method Area Under the Curve (AUC) 1 years AUC of the ROC curve, used to quantify diagnostic accuracy. No unit (a ratio or percentage, typically expressed as a number between 0 and 1).
Sensitivity 1 years Sensitivity (also called True Positive Rate) is a measure of how well a model identifies positive instances. It is defined as the proportion of actual positive cases correctly identified by the model. No unit (a ratio or percentage, typically expressed as a percentage).
Accuracy Accuracy Accuracy 1 years Accuracy measures the proportion of all correct predictions (true positives and true negatives) out of the total number of cases evaluated by the model. No unit (a ratio or percentage, typically expressed as a percentage).
Specificity 1 years Specificity (also called True Negative Rate) measures the proportion of actual negative cases correctly identified by the model. No unit (a ratio or percentage, typically expressed as a percentage).
False Positive Rate 1 years False Positive Rate (FPR) measures the proportion of actual negative cases that are incorrectly identified as positive by the model. No unit (a ratio or percentage, typically expressed as a percentage).
False Negative Rate 1 years False Negative Rate (FNR) measures the proportion of actual positive cases that are incorrectly identified as negative by the model. No unit (a ratio or percentage, typically expressed as a percentage).
Postoperative Complication Rate 1 years Percentage (%) of patients experiencing postoperative complications.
Recurrence Risk Rate 1 years Percentage (%) of patients experiencing recurrence during the follow-up period.
Survival Rate 1 years Percentage (%) of patients alive, calculated using Kaplan-Meier survival curves.
Effectiveness of Decision Support 1 years Percentage (%) improvement in the accuracy of treatment decisions with AI assistance compared to traditional decisions.
Decision Time Efficiency 1 years Average time (seconds) required for physicians to make diagnostic and treatment decisions, before and after AI assistance.
- Secondary Outcome Measures
Name Time Method System Usability Score 1 years Evaluated using the System Usability Scale (SUS), with scores ranging from 0-100.
AI System Response Time 1 years Average time (seconds) taken for the AI to provide recommendations after data input.
System Failure Rate 1 years Frequency of AI system failures, measured as failures per thousand hours of use (failures/thousand hours).
User Interface Design Satisfaction 1 years Evaluated using the User Experience Questionnaire (UEQ), with scores ranging from 1-7.
Patient Satisfaction Score 1 years Measured using the Patient Satisfaction Questionnaire (CSQ-8), with scores ranging from 8-32.
Treatment Adherence 1 years Percentage (%) of patients adhering to personalized treatment plans and regular follow-up visits.
Physician Acceptance of AI System 1 years Evaluated using the Technology Acceptance Model (TAM) scale, with scores ranging from 1-7.
Related Research Topics
Explore scientific publications, clinical data analysis, treatment approaches, and expert-compiled information related to the mechanisms and outcomes of this trial. Click any topic for comprehensive research insights.
Trial Locations
- Locations (5)
ZhuHai Hospital, zhuhai, guangdong
🇨🇳Zhuhai, Guangdong, China
First Affiliated Hospital of Wenzhou Medical University
🇨🇳Wenzhou, Zhejiang, China
Second Affiliated Hospital of Wenzhou Medical Universit
🇨🇳Wenzhou, Zhejiang, China
The Eye Hospital of Wenzhou Medical University
🇨🇳Wenzhou, Zhejiang, China
Macau University of Science and Technology Hospital
🇲🇴Macau, Macau