Concomitant Use of Gardasil (V501, Human Papillomavirus [Types 6, 11, 16, 18] Recombinant Vaccine) With Combined Diptheria, Tetanus, Pertussis and Poliomyelitis Vaccine in Adolescents (V501-024)(COMPLETED)
- Conditions
- Neoplasms, Glandular and EpithelialWhooping CoughPoliomyelitisDiphtheriaTetanus
- Registration Number
- NCT00337428
- Lead Sponsor
- Merck Sharp & Dohme LLC
- Brief Summary
Data from this study are expected to demonstrate that Gardasil (V501, Human Papillomavirus \[Types 6, 11, 16, 18\] Recombinant Vaccine), when administered concomitantly with a combined diphtheria, tetanus, pertussis, and poliomyelitis vaccine in adolescents remains immunogenic and well-tolerated and it does not impair the immunogenicity of the concomitant vaccines.
- Detailed Description
Not available
Recruitment & Eligibility
- Status
- COMPLETED
- Sex
- All
- Target Recruitment
- 843
- Must be healthy boys or girls, 11-17 years of age
- Must be a virgin with no intention of becoming sexually active during the study period
- Must have been properly vaccinated against diphtheria, tetanus, pertussis and polio
- Must not have received a vaccine against diphtheria, tetanus, pertussis and polio in the past 5 years
- Must not have received any prior human papillomavirus (HPV) vaccine
Study & Design
- Study Type
- INTERVENTIONAL
- Study Design
- PARALLEL
- Primary Outcome Measures
Name Time Method Geometric Mean Titers (GMTs) for Anti-HPV 11 at Month 7 (4 Weeks Postdose 3) Up to 7 Months (4 Weeks Postdose 3) Serum antibodies to HPV Type 11 were measured with a Competitive Luminex Immunoassay. Titers were reported in milli Merck Units (mMU)/milliliter (mL). GMTs from participants who received qHPV vaccine and REPEVAX™ together at Day 1 (concomitant) were compared to GMTs from participants who received qHPV vaccine at Day 1 followed by REPEVAX™ 1 month later (non-concomitant). An analysis of non-inferiority compared GMTs for each HPV type using an ANOVA model with a response of log individual titers and fixed effects for treatment group, manufacturing facility, study site, and the treatment-by-site interaction.
Number of Participants Who Seroconverted for HPV Type 18 (HPV 18 ≥24 mMU/mL) by Month 7 (4 Weeks Postdose 3) Up to 7 Months (4 Weeks Postdose 3) Seroconversion to HPV Type 18 was defined as changing serostatus from seronegative to seropositive as measured by GMT. The cutoff value for HPV seropositivity was ≥24 mMU/mL. Seroconversion of participants who received qHPV vaccine and REPEVAX™ together at Day 1 (concomitant) was compared to seroconversion of participants who received qHPV vaccine at Day 1 followed by REPEVAX™ 1 month later (non-concomitant). An analysis of non-inferiority compared seroconversion for each HPV type using methods developed by Miettinen and Nurminen adjusting for manufacturing facility for qHPV vaccine.
Number of Participants Who Achieved Acceptable Levels of Titers to Diphtheria (Diphtheria ≥0.1 IU/mL) One Month Post-vaccination With REPEVAX™ Up to 1 Month (1 Month Postdose 1) Diphtheria antitoxin titers were measured using a neutralization assay in Vero cell culture that compares the antitoxin level in the serum of participants with the World Health Organization International Standard for Diphtheria Antitoxin. An acceptable level of response was defined as ≥0.1 International Units (IU)/milliliter (mL). Response levels of participants who received qHPV vaccine and REPEVAX™ together at Day 1 (concomitant) were compared to participants who received qHPV vaccine at Day 1 followed by REPEVAX™ 1 month later (non-concomitant). An analysis of non-inferiority compared response levels using methods developed by Miettinen and Nurminen adjusting for manufacturing facility for qHPV vaccine.
Number of Participants Who Achieved Acceptable Levels of Titers to Poliovirus Type 2 (Poliovirus Type 2 ≥1:8) One Month Postvaccination With REPEVAX™ Up to 1 Month (1 Month Postdose 1) Poliovirus antibody was measured using a poliovirus neutralization assay that assesses the ability of serial dilutions of participant sera to neutralize known amounts of type-specific Sabin poliovirus strains (Types 1, 2, and 3). An acceptable level of response was defined as participants who achieve detectable serum neutralizing antibodies at a ≥1:8 dilution of sera. The response of participants who received qHPV vaccine and REPEVAX™ together at Day 1 (concomitant) was compared to participants who received qHPV vaccine at Day 1 followed by REPEVAX™ 1 month later (non-concomitant). An analysis of non-inferiority compared response levels using methods developed by Miettinen and Nurminen adjusting for manufacturing facility for qHPV vaccine.
Number of Participants Who Achieved Acceptable Levels of Titers to Poliovirus Type 3 (Poliovirus Type 3 ≥1:8) One Month Postvaccination With REPEVAX™ Up to 1 Month (1 Month Postdose 1) Poliovirus antibody was measured using a poliovirus neutralization assay that assesses the ability of serial dilutions of participant sera to neutralize known amounts of type-specific Sabin poliovirus strains (Types 1, 2, and 3). An acceptable level of response was defined as participants who achieve detectable serum neutralizing antibodies at a ≥1:8 dilution of sera. The response of participants who received qHPV vaccine and REPEVAX™ together at Day 1 (concomitant) was compared to participants who received qHPV vaccine at Day 1 followed by REPEVAX™ 1 month later (non-concomitant). An analysis of non-inferiority compared response levels using methods developed by Miettinen and Nurminen adjusting for manufacturing facility for qHPV vaccine.
Number of Participants Who Seroconverted for HPV Type 6 (HPV 6 ≥20 mMU/mL) by Month 7 (4 Weeks Postdose 3) Up to 7 Months (4 Weeks Postdose 3) Seroconversion to HPV Type 6 was defined as changing serostatus from seronegative to seropositive as measured by GMT. The cutoff value for HPV seropositivity was ≥20 mMU/mL. Seroconversion of participants who received qHPV vaccine and REPEVAX™ together at Day 1 (concomitant) was compared to seroconversion of participants who received qHPV vaccine at Day 1 followed by REPEVAX™ 1 month later (non-concomitant). An analysis of non-inferiority compared seroconversion for each HPV type using methods developed by Miettinen and Nurminen adjusting for manufacturing facility for qHPV vaccine.
Number of Participants Who Seroconverted for HPV Type 11 (HPV 11 ≥16 mMU/mL) by Month 7 (4 Weeks Postdose 3) Up to 7 Months (4 Weeks Postdose 3) Seroconversion to HPV Type 11 was defined as changing serostatus from seronegative to seropositive as measured by GMT. The cutoff value for HPV seropositivity was ≥16 mMU/mL. Seroconversion of participants who received qHPV vaccine and REPEVAX™ together at Day 1 (concomitant) was compared to seroconversion of participants who received qHPV vaccine at Day 1 followed by REPEVAX™ 1 month later (non-concomitant). An analysis of non-inferiority compared seroconversion for each HPV type using methods developed by Miettinen and Nurminen adjusting for manufacturing facility for qHPV vaccine.
Number of Participants Who Achieved Acceptable Levels of Titers to Tetanus (Tetanus ≥0.1 IU/mL) One Month Post-vaccination With REPEVAX™ Up to 1 Month (1 Month Postdose 1) Tetanus antitoxin titers were measured using an indirect, non-competitive enzyme immunoassay (EIA) that compares the antitoxin level in the serum of participants with the World Health Organization International Standard for Tetanus Immunoglobulin. An acceptable level of response was defined as ≥0.1 International Units (IU)/milliliter (mL). Response levels of participants who received qHPV vaccine and REPEVAX™ together at Day 1 (concomitant) were compared to participants who received qHPV vaccine at Day 1 followed by REPEVAX™ 1 month later (non-concomitant). An analysis of non-inferiority compared response levels using methods developed by Miettinen and Nurminen adjusting for manufacturing facility for qHPV vaccine.
Number of Participants Who Achieved Acceptable Levels of Titers to Poliovirus Type 1 (Poliovirus Type 1 ≥1:8) One Month Postvaccination With REPEVAX™ Up to 1 Month (1 Month Postdose 1) Poliovirus antibody was measured using a poliovirus neutralization assay that assesses the ability of serial dilutions of participant sera to neutralize known amounts of type-specific Sabin poliovirus strains (Types 1, 2, and 3). An acceptable level of response was defined as participants who achieve detectable serum neutralizing antibodies at a ≥1:8 dilution of sera. The response of participants who received qHPV vaccine and REPEVAX™ together at Day 1 (concomitant) was compared to participants who received qHPV vaccine at Day 1 followed by REPEVAX™ 1 month later (non-concomitant). An analysis of non-inferiority compared response levels using methods developed by Miettinen and Nurminen adjusting for manufacturing facility for qHPV vaccine.
Geometric Mean Titers (GMTs) For Pertussis (Anti-PRN) One Month Postvaccination With REPEVAX™ Up to 1 Month (1 Month Postdose 1) Serum antibodies to Pertussis Pertactin (anti-PRN) were measured with an ELISA. Titers were reported in ELU/mL and the lower limit of quantitation for the assay was 5.0 ELU/mL. GMTs from participants who received qHPV vaccine and REPEVAX™ together at Day 1 (concomitant) were compared to GMTs from participants who received qHPV vaccine at Day 1 followed by REPEVAX™ 1 month later (non-concomitant). An analysis of non-inferiority compared GMTs using an ANOVA model with a response of log individual titers and fixed effects for treatment group, manufacturing facility, study site, and the treatment-by-site interaction.
Geometric Mean Titers (GMTs) for Anti-HPV 6 at Month 7 (4 Weeks Postdose 3) Up to 7 Months (4 Weeks Postdose 3) Serum antibodies to HPV Type 6 were measured with a Competitive Luminex Immunoassay. Titers were reported in milli Merck Units (mMU)/milliliter (mL). GMTs from participants who received qHPV vaccine and REPEVAX™ together at Day 1 (concomitant) were compared to GMTs from participants who received qHPV vaccine at Day 1 followed by REPEVAX™ 1 month later (non-concomitant). An analysis of non-inferiority compared GMTs for each HPV type using an ANOVA model with a response of log individual titers and fixed effects for treatment group, manufacturing facility, study site, and the treatment-by-site interaction.
Geometric Mean Titers (GMTs) for Anti-HPV 16 at Month 7 (4 Weeks Postdose 3) Up to 7 Months (4 Weeks Postdose 3) Serum antibodies to HPV Type 16 were measured with a Competitive Luminex Immunoassay. Titers were reported in milli Merck Units (mMU)/milliliter (mL). GMTs from participants who received qHPV vaccine and REPEVAX™ together at Day 1 (concomitant) were compared to GMTs from participants who received qHPV vaccine at Day 1 followed by REPEVAX™ 1 month later (non-concomitant). An analysis of non-inferiority compared GMTs for each HPV type using an ANOVA model with a response of log individual titers and fixed effects for treatment group, manufacturing facility, study site, and the treatment-by-site interaction.
Geometric Mean Titers (GMTs) for Anti-HPV 18 at Month 7 (4 Weeks Postdose 3) Up to 7 Months (4 Weeks Postdose 3) Serum antibodies to HPV Type 18 were measured with a Competitive Luminex Immunoassay. Titers were reported in milli Merck Units (mMU)/milliliter (mL). GMTs from participants who received qHPV vaccine and REPEVAX™ together at Day 1 (concomitant) were compared to GMTs from participants who received qHPV vaccine at Day 1 followed by REPEVAX™ 1 month later (non-concomitant). An analysis of non-inferiority compared GMTs for each HPV type using an ANOVA model with a response of log individual titers and fixed effects for treatment group, manufacturing facility, study site, and the treatment-by-site interaction.
Number of Participants Who Seroconverted for HPV Type 16 (HPV 16 ≥20 mMU/mL) by Month 7 (4 Weeks Postdose 3) Up to 7 Months (4 Weeks Postdose 3) Seroconversion to HPV Type 16 was defined as changing serostatus from seronegative to seropositive as measured by GMT. The cutoff value for HPV seropositivity was ≥20 mMU/mL. Seroconversion of participants who received qHPV vaccine and REPEVAX™ together at Day 1 (concomitant) was compared to seroconversion of participants who received qHPV vaccine at Day 1 followed by REPEVAX™ 1 month later (non-concomitant). An analysis of non-inferiority compared seroconversion for each HPV type using methods developed by Miettinen and Nurminen adjusting for manufacturing facility for qHPV vaccine.
Geometric Mean Titers (GMTs) For Pertussis (Anti-PT) One Month Postvaccination With REPEVAX™ Up to 1 Month (1 Month Postdose 1) Serum antibodies to Pertussis Toxoid Antibody (anti-PT) were measured with an enzyme-linked immunosorbent assay (ELISA). Titers were reported in ELISA units/mL (ELU/mL) and the lower limit of quantitation for the assay was 5.0 ELU/mL. GMTs from participants who received qHPV vaccine and REPEVAX™ together at Day 1 (concomitant) were compared to GMTs from participants who received qHPV vaccine at Day 1 followed by REPEVAX™ 1 month later (non-concomitant). An analysis of non-inferiority compared GMTs using an ANOVA model with a response of log individual titers and fixed effects for treatment group, manufacturing facility, study site, and the treatment-by-site interaction.
Geometric Mean Titers (GMTs) For Pertussis (Anti-FHA) One Month Postvaccination With REPEVAX™ Up to 1 Month (1 Month Postdose 1) Serum antibodies to Pertussis Filamentous Haemagglutin Antibody (anti-FHA) were measured with an ELISA. Titers were reported in ELU/mL and the lower limit of quantitation for the assay was 3.0 ELU/mL. GMTs from participants who received qHPV vaccine and REPEVAX™ together at Day 1 (concomitant) were compared to GMTs from participants who received qHPV vaccine at Day 1 followed by REPEVAX™ 1 month later (non-concomitant). An analysis of non-inferiority compared GMTs using an ANOVA model with a response of log individual titers and fixed effects for treatment group, manufacturing facility, study site, and the treatment-by-site interaction.
Geometric Mean Titers (GMTs) For Pertussis (Anti-FIM) One Month Postvaccination With REPEVAX™ Up to 1 Month (1 Month Postdose 1) Serum antibodies to Pertussis Fimbrial Agglutinogens Antibody (anti-FIM) were measured with an ELISA. Titers were reported in ELU/mL and the lower limit of quantitation for the assay was 5.0 ELU/mL. GMTs from participants who received qHPV vaccine and REPEVAX™ together at Day 1 (concomitant) were compared to GMTs from participants who received qHPV vaccine at Day 1 followed by REPEVAX™ 1 month later (non-concomitant). An analysis of non-inferiority compared GMTs for each HPV Type using an ANOVA model with a response of log individual titers and fixed effects for treatment group, manufacturing facility, study site, and the treatment-by-site interaction.
- Secondary Outcome Measures
Name Time Method