MedPath

Tailored Exercise Interventions to Reduce Fatigue in Cancer Survivors

Not Applicable
Completed
Conditions
Cancer-related Fatigue
Interventions
Other: Traditional Exercise
Other: Tailored Exercise
Registration Number
NCT03049384
Lead Sponsor
University of Calgary
Brief Summary

Cancer-related fatigue (CRF) is a common and distressing symptom of cancer and/or cancer treatment that can persist for months or years in cancer survivors. Exercise is beneficial for the management of CRF, and general exercise guidelines for cancer survivors are available. However, exercise interventions have not been tailored to alleviate CRF in fatigued cancer survivors, and thus the potential to alleviate CRF may not have been realized. The primary aim of this research is to investigate the effect of a traditional vs. tailored 12-week exercise intervention on self-reported CRF severity.

Detailed Description

Background and Rationale

Approximately one-third of cancer survivors experience severe and persistent fatigue for a number of years post-treatment, but this distressing symptom is often under-treated by healthcare professionals due to a lack of mechanism-targeted interventions. The assessment of cancer-related fatigue (CRF) is reliant on subjective fatigue measurements such as self-report questionnaires. Less attention has been given to objective physiological measurements. However, there are well-established techniques which allow the assessment of neuromuscular fatigue and its peripheral and central origins which could be utilized in the study of CRF. Very few studies have considered these objective measures alongside self-report scales in the study of CRF and only two have used such techniques in cancer survivors. To date, no studies have investigated neuromuscular fatigue in whole body, dynamic activity as relevant to daily tasks (and involving the lower limb due to its functional relevance to locomotion). Novel testing developed in our laboratory could be used as part of a wider screening to develop individualized interventions to alleviate CRF. It is well accepted in the field that CRF is multidimensional and in addition to a potential neuromuscular component, the role of sleep disturbance may also be implicated. Interventions targeted at improving sleep quality are therefore warranted, and there is sound evidence for the efficacy of exercise interventions in particular for improving CRF in cancer survivors. As a non-pharmacological intervention, physical activity has the strongest evidence base for treating CRF. However, the mechanisms explaining the reduction of CRF with exercise are not understood. Due to the complex and multi-factorial nature of CRF, it would be of benefit to tailor exercise interventions to the specific deficits (in regards to neuromuscular mechanisms) or difficulties (for example sleep disturbance) experienced by the individual. Ultimately, mechanism-targeted exercise interventions could be translated to clinical rehabilitation programs and lead to an improved quality of for cancer survivors.

Research Question \& Objectives

The primary aim of this research is to investigate the effect of a traditional vs. tailored 12-week exercise intervention on self-reported CRF severity.

Methods

Fatigued cancer survivors who have completed primary treatment ≥ 3 months and ≤ 5 years from enrollment will be randomly allocated to one of two treatment arms: traditional (active control) and tailored exercise. Participants in the traditional exercise group will engage in aerobic and resistance exercise that is consistent with published recommendations. The tailored exercise group will be prescribed an intervention designed to address individual deficits (identified at baseline) that may be related to CRF. Participants will be assessed before and after the intervention for patient-reported outcomes, neuromuscular function and fatigue in response to whole-body exercise, sleep quantity and quality, physical activity levels, cardiorespiratory fitness and blood biomarkers.

Recruitment & Eligibility

Status
COMPLETED
Sex
All
Target Recruitment
43
Inclusion Criteria
  • Aged between 18 and 75 years;
  • Functional Assessment of Chronic Illness Therapy-Fatigue (FACIT-Fatigue) score ≤ 34;
  • Completion of treatment in ≥ 3 months and ≤ 5 years preceding enrollment;
  • Approval received from personal physician and/or a Canadian Society for Exercise Physiology-Clinical Exercise Physiologist (CSEP-CEP);
  • Command of the English language.
Read More
Exclusion Criteria
  • Contraindication to experimental procedures including transcranial magnetic stimulation (TMS);
  • Diagnosed as having obstructive sleep apnea or anemia;
  • Currently participating in a structured exercise intervention;
  • Participant is pregnant.
Read More

Study & Design

Study Type
INTERVENTIONAL
Study Design
PARALLEL
Arm && Interventions
GroupInterventionDescription
Traditional ExerciseTraditional ExerciseA classical exercise intervention based on current guidelines for cancer survivors.
Tailored ExerciseTailored ExerciseA tailored and individualized exercise intervention based on the results of pre-intervention testing.
Primary Outcome Measures
NameTimeMethod
Assessment of change in the Functional Assessment of Chronic Illness Therapy - Fatigue (FACIT-Fatigue) ScaleBaseline to after the 12-week intervention, at 6 month and 12 month follow up.

Self-report questionnaire for the assessment of cancer-related fatigue.

Secondary Outcome Measures
NameTimeMethod
Maximal Isometric Force in the Knee ExtensorsBaseline and after the 12-week intervention.

A reduction in maximal isometric force in the knee extensors measured before, during and after an intermittent cycling test.

Potentiated Doublet Twitch ForceBaseline and after the 12-week intervention.

A reduction in potentiated quadriceps twitch force (from a high frequency doublet at 100 Hz) measured before, before, during and after an intermittent cycling test.

Actual Wake TimeBaseline and after the 12-week intervention.

Time spent awaken during the night, recorded with actigraphy.

Voluntary ActivationBaseline and after the 12-week intervention.

A reduction voluntary activation (using femoral nerve stimulation) measured before, during and after an intermittent cycling test.

Assessment of change in The Functional Assessment of Cancer Therapy - General (FACT-G)Baseline and after the 12-week intervention.

General quality of life instrument intended for use with a variety of chronic illness conditions.

intra-daily variabilityBaseline and after the 12-week intervention.

the fragmentation of periods of rest and activity, recorded with actigraphy.

Assessment of change in Edmonton Symptom Assessment System-revised tiredness scaleBaseline and after the 12-week intervention, and during follow up (6 and 12 months).

Self-report questionnaire for the assessment of of nine common symptoms experienced by cancer patients.

Muscle Compound Action Potential (M-Wave) Peak-to Peak AmplitudeBaseline and after the 12-week intervention.

Evoked from supra-maximal stimulation of the femoral nerve and measured before, during and after an intermittent cycling test.

Muscle Compound Action Potential (M-Wave) Peak-to Peak DurationBaseline and after the 12-week intervention.

Evoked from supra-maximal stimulation of the femoral nerve and measured before, during and after an intermittent cycling test.

Motor Evoked Potential (MEP) AreaBaseline and after the 12-week intervention.

Normalized to the maximal M-wave and measured before, during and after an intermittent cycling test.

Amplitude of the Sleep-Wake CycleBaseline and after the 12-week intervention.

The mean difference between lowest and highest activity period, recorded with actigraphy.

Peak Time of the sleep-wake CycleBaseline and after the 12-week intervention.

Time of day of the highest estimated level of wake, recorded by actigraphy.

Activity IndexBaseline and after the 12-week intervention.

Percentage of activity per epoch for wake and sleep, recorded with actigraphy.

Cortical Voluntary ActivationBaseline and after the 12-week intervention.

A reduction voluntary activation (using transcranial magnetic stimulation) measured measured before, during and after an intermittent cycling test.

Motor Evoked Potential (MEP) Peak-to Peak AmplitudeBaseline and after the 12-week intervention.

Normalized to the maximal M-wave and measured before, during and after an intermittent cycling test.

Sleep Onset LatencyBaseline and after the 12-week intervention.

Time to fall asleep, recorded with actigraphy.

Fragmentation indexBaseline and after the 12-week intervention.

Indication of the sleep quality based on movement during night, recorded with actigraphy.

Assessment of change in The Social Prevision Scale (SPS)Baseline and after the 12-week intervention.

Self-report questionnaire for the assessment of social support.

Heart Rate VariabilityBaseline and after the 12-week intervention.

Variation in the time interval between heartbeats.

Muscle Compound Action Potential (M-Wave) AreaBaseline and after the 12-week intervention.

Evoked from supra-maximal stimulation of the femoral nerve and measured before, during and after an intermittent cycling test.

Cortical Silent PeriodBaseline and after the 12-week intervention.

Evoked from TMS and measured (from stimulation artifact to the continuous resumption of EMG) before, during and after an intermittent cycling test.

inter-daily stabilityBaseline and after the 12-week intervention.

the degree of regularity of the rest-activity patterns on individual days in the 24 h environment, recorded with actigraphy.

Wake actigraphyBaseline and after the 12-week intervention.

Amount of activity during wake, recorded with actigraphy

Time in bedBaseline and after the 12-week intervention.

Time spent between the moment subject turn off the light to sleep and the moment he gets up, recorded with actigraphy.

Sleep EfficiencyBaseline and after the 12-week intervention.

Ratio between the time spent asleep and the total duration of sleep period, recorded with actigraphy.

Assessment of change in The Insomnia Severity Index (ISI)Baseline and after the 12-week intervention.

Self-report questionnaire for the assessment of insomnia severity.

Assessment of change in Fat MassBaseline and after the 12-week intervention.

Measured using dual energy X-ray absorptiometry (DXA).

Assessment of change in Fat Free MassBaseline and after the 12-week intervention.

Measured using dual energy X-ray absorptiometry (DXA).

Motor Evoked Potential (MEP) Peak-to Peak DurationBaseline and after the 12-week intervention.

Normalized to the maximal M-wave and measured before, during and after an intermittent cycling test.

Voluntary Electromyography (EMG)Baseline and after the 12-week intervention.

Root mean square of the EMG signal during an MVC, measured before, during and after an intermittent cycling test.

Mesor of the Sleep-Wake CycleBaseline and after the 12-week intervention.

Mean level of activity over 24 hours, recorded with actigraphy.

L5Baseline and after the 12-week intervention.

The mean activity counts in the least active 5 h period in the average 24 h pattern) recorded with actigraphy.

L5 midBaseline and after the 12-week intervention.

The central time of the L5 period, usually referring to the through of the activity period), recorded with actigraphy.

Sleep ActivityBaseline and after the 12-week intervention.

Amount of activity during sleep periods, recorded with actigraphy

Actual Sleep TimeBaseline and after the 12-week intervention.

Time spent asleep during the night, recorded with actigraphy.

Assessment of change in The Functional Assessment of Cancer Therapy (FACT) Cancer SpecificBaseline and after the 12-week intervention.

Self-report questionnaire for the assessment

Assessment of change in The Modified-Godin Leisure Time Exercise Questionnaire (GLTEQ)Baseline, after the 12-week intervention, and during follow up (6 and 12 months).

Self-report questionnaire for the assessment of leisure time physical activity.

Assessment of change in The Brief Pain Inventory Short Form (BPI-sf)Baseline and after the 12-week intervention.

Self-report questionnaire for the assessment of pain.

Assessment of change in Muscle Cross-Sectional AreaBaseline and after the 12-week intervention.

Ultrasound measurement of the vastus lateralis and rectus femoris.

Assessment of change in Bone Mineral DensityBaseline and after the 12-week intervention.

Measured using dual energy X-ray absorptiometry (DXA).

Blood BiomarkersBaseline and after the 12-week intervention.

Blood count, catecholamines, serotonin, cortisol, inflammatory markers and markers of oxidative stress.

Assessment of change in the Centre for Epidemiological Studies Depression Scale (CES-D) questionnaire.Baseline and after the 12-week intervention.

Self-report questionnaire for the assessment of health-related quality of life, specific to cancer type.

Assessment of change in Maximal Oxygen UptakeBaseline and after the 12-week intervention.

The highest 30 second average oxygen uptake measured during an an incremental cycling test.

Trial Locations

Locations (1)

University of Calgary

🇨🇦

Calgary, Alberta, Canada

© Copyright 2025. All Rights Reserved by MedPath