A Potential Wearable for Post-stroke Rehabilitation
- Conditions
- Chronic Stroke
- Interventions
- Device: A functional electrical stimulation device for post-stroke rehabilitation
- Registration Number
- NCT04154514
- Lead Sponsor
- Chinese University of Hong Kong
- Brief Summary
Participants are seeking to unleash the full therapeutic potential of a newly developed, customizable and potentially commericializable 10-channel Functional Electrical Stimulation (FES) to rehabilitate the gait of chronic stroke survivors. Each subject will undergo 18-sessions (\~1 month) FES training. Participants will utilize the theory of muscle synergies from motor neurosciences, which are defined as neural modules of motor control that coordinate the spatiotemporal activation patterns of multiple muscles, to guide our personal selections of muscles for FES. It is hypothesized that chronic stroke survivors will learn from FES stimulations, over several daily sessions, both by suppressing the original abnormal muscle synergies and by employing the normal muscle synergies as specified in the FES. It is also expected that the walk synergies of the paretic side of chronic stroke survivors should be more similar to healthy muscle synergies at the two post-training time points than before training.
- Detailed Description
Stroke is one of the leading causes of long-term adult disability worldwide. The impaired ability to walk post-stroke severely limits mobility and quality of life. Many recently-developed assistive technologies for gait rehabilitation are at present only marginally better at best than traditional therapies in their efficacies. There is an urgent need of novel, clinically viable, and effective gait rehabilitative strategies that can provide even better functional outcome for stroke survivors with diverse presentations.
Among the many new post-stroke interventions, functional electrical stimulation (FES) of muscles remains attractive. FES is a neural-rehabilitative technology that communicates control signals from an external device to the neuromuscular system. There is increasing recognition that rehabilitation paradigms should promote restitution of the patient's muscle coordination towards the normal pattern during training, and FES can achieve this goal when stimulations are applied to the set of muscles whose natural coordination is impaired. For this reason, FES is a very promising interventional strategy. Existing FES paradigms, however, have yielded ambiguous results in previous clinical trials, especially those for chronic survivors, likely because either stimulations were applied only to single or a few muscles, or the stimulation pattern did not mimic the natural muscle coordination pattern during gait. A multi-muscle FES, when applied to a larger functional set of muscles and driven by their natural coordination pattern, can guide muscle activations towards the normal pattern through neuroplasticity, thus restore impairment at the level of muscle-activation deficit.
The first aim of our project is to utilize a 8-channel FES wearable for delivering multi-muscle FES to muscles in the lower-limb muscles. Participants will attempt to rehabilitate the gait of chronic stroke survivors over 12 training sessions by delivering stimulations to multiple muscles, in their natural coordination pattern, using our wearable. As such, participants will utilize the theory of muscle synergy from motor neuroscience to guide our personalizable selections of muscles for FES. Muscle synergies are hypothesized neural modules of motor control that coordinate the spatiotemporal activation patterns of multiple muscles. Our customizable FES pattern for each stroke survivor will be constructed based on the normal muscle synergies that are absent in the stroke survivor's muscle pattern during walking. Since muscle synergies represent the natural motor-control units used by the nervous system, reinforcement of their activations through FES should lead to restoration of normal neuromuscular coordination, thus more natural post-training gait.
Our second aim is to evaluate the effectiveness of our FES paradigm by assessing the walk-muscle synergies in the paretic and non-paretic legs of the trained stroke survivors, before, after, and 1 month following our intervention. In doing so, participants hope to explore whether lower-limb muscle synergy can be a physiologically-based marker of motor impairment for stroke survivors.
If our muscle-synergy-based multi-muscle FES is indeed efficacious, our strategy will help many disabled chronic stroke survivors to regain mobility, thus living with a much higher quality of life in the decades to come. The clinical and societal impact of our research will be huge.
Recruitment & Eligibility
- Status
- RECRUITING
- Sex
- All
- Target Recruitment
- 45
- Right-handed elderly chronic stroke survivors; age ≥40; ≥6 months post-stroke
- Unilateral ischemic brain lesions
- Participants should be able to walk continuously for ≥15 min. with or without assistive aid
- Cannot comprehend and follow instructions, or with a score <21 on the mini-mental state exam;
- Have cardiac pacemaker;
- Have skin lesions at the locations where FES or EMG electrodes may be attached;
- Have major depression;
- Present with severe neglect
- Patients with type i and ii diabetes
Study & Design
- Study Type
- INTERVENTIONAL
- Study Design
- SINGLE_GROUP
- Arm && Interventions
Group Intervention Description Delivery no current FES to stroke survivors (Sham group) A functional electrical stimulation device for post-stroke rehabilitation In stroke survivors, normal and abnormal muscle synergies will also be determined from their walk EMGs. Our proposed FES intervention involves delivering stimulations to muscles with waveforms generated from the activations of all the normal synergies not observed in each stroke survivor. Additionally, we are going to introduce a sham group. We are going to employ the wearable to multiple groups of leg muscles on the stroke-affected side of elderly chronic stroke survivors without any stimulation as they walk on a treadmill or overground for gait rehabilitation. The purpose of the sham group is to empirically validate the effectiveness of the FES wearable. Delivering FES to stroke survivors A functional electrical stimulation device for post-stroke rehabilitation In stroke survivors, normal and abnormal muscle synergies will also be determined from their walk EMGs. Our proposed FES intervention involves delivering stimulations to muscles with waveforms generated from the activations of all the normal synergies not observed in each stroke survivor. We are going to employ the wearable to deliver personalized muscle-synergy-based FES stimulations to multiple groups of leg muscles on the stroke-affected side of elderly chronic stroke survivors as they walk on a treadmill/overground for gait rehabilitation. We hypothesized that the subject will essentially be walking with his/her abnormal muscle pattern superimposed with the artificially introduced "normal" muscle pattern coming from FES.
- Primary Outcome Measures
Name Time Method Surface electromyographic signals from up to 14 muscles on the paretic and non-paretic side during gait. The assessment will be performed at 2.5 weeks To assess the muscle synergies, surface EMGs will be recorded from 14 muscles (tibialis anterior (TA), medical gastrocnemius (MG), soleus (SOL), vastus medialis (VM), rectus femoris (RF), hamstrings (HAM), adductor longus (AL), gluteus maximus (GM) lateral gastrocnemius (LG), vastus lateralis (VL), tensor fasciae latae (TFL), erector spinae (ES), external oblique (EO), and latissimus dorsi (LatDor)), using a wireless EMG system (Delsys; 2000 Hz). All electrodes will be securely attached to skin surface using double-sided and medical tapes.
- Secondary Outcome Measures
Name Time Method Fugl-Meyer assessment score (lower-limb) The assessment will be performed at 4 weeks Lower-limb motor function assessment
Mini-BEStest The assessment will be performed at 4 weeks Balance test
Gait kinemetics The assessment will be performed at 4 weeks During FES sessions, kinematic measurements will be provided by the wearable's IMUs. During sessions of motor-impairment assessments, we will capture more precise kinematics using a 10-camera motion capture system (VICON; 200 Hz). This system tracks the 3D positions of 40 markers placed on the legs and torso, and is equipped with suitable models for reconstructing bilateral angles of the hip, knee and ankle.
Trial Locations
- Locations (1)
The Hong Kong Polytechnic University
🇭🇰Hong Kong, Hong Kong