MedPath

Does The Surfactant Administration by Aerosolization Effective?

Not Applicable
Conditions
Surfactant Administration by Aerosolization
Respiratory Distress Syndrome
Interventions
Drug: surfactant
Device: nasal continuous positive airway pressure
Device: non-invasive intermittent positive-pressure ventilation
Device: Neopuff
Device: neonatal ventilator
Registration Number
NCT02825953
Lead Sponsor
nihat demir
Brief Summary

The present study was designed to evaluate, in premature babies with RDS breathing spontaneously, the efficacy of combined treatment with nasal continuous positive airway pressure (CPAP) and aerosolized surfactant. The first objective of investigators is to assess the safety of surfactant nebulization in this clinical situation, and to find out whether treatment with aerosolized surfactant would reduce the need for mechanical ventilation. And other aim suggest that aerosolized dates compared with dates of INSURE (intubation-surfactant-extubation) and minimally invasive surfactant therapy (MIST) method.

Detailed Description

Does The Surfactant Administration by Aerosolization of Respiratory Distress Syndrome effective in Spontaneously Breathing Premature Infants ? Endotracheal bolus application of natural surfactant has been shown to be an effective treatment for idiopathic respiratory distress syndrome (RDS), especially in premature neonates with weeks of pregnancy \> 27 week. However, patients are intubated nasotracheal or orotracheal for this form of treatment. This intubation carries potential risks of injuries to the dental lamina, the larynx, and the trachea, bronchopulmonary infections, and fluctuations in cerebral blood flow, intra- and periventricular haemorrhage (1). In addition, many babies with RDS who initially respond to surfactant therapy later develop chronic lung disease (CLD) (2). With this in mind, the investigators attempt to administer surfactant in a more gentle way, i.e. by nebulization. Administration by aerosol during spontaneous respiration is less traumatic and avoids intubation with the accompanying mechanical and infectious risks and pathophysiological effects.

The present study was designed to evaluate, in premature babies with RDS breathing spontaneously, the efficacy of combined treatment with nasal continuous positive airway pressure (CPAP) and aerosolized surfactant. The first objective of investigators is to assess the safety of surfactant nebulization in this clinical situation, and to find out whether treatment with aerosolized surfactant would reduce the need for mechanical ventilation. And other aim suggest that aerosolized dates compared with dates of INSURE (intubation-surfactant-extubation) and minimally invasive surfactant therapy (MIST) method.

Seventy-five newborn babies from neonatal intensive care unit (NICU) of Yuzuncu Yil University Medical Scholl (Van, Turkey) will be randomized to treatment with nebulized surfactant (Curosurf®, Chiesi Pharmaceutics, Parma, Italy) or to two control groups receiving INSURE and MIST method. The study will be conducted with 75 infants, 25 in each group. Randomization will be central and performed using sealed envelopes kept at the neonatal ward of Yuzuncu Yil University Medical Centre Hospital. Informed consent was obtained from all parents before randomization. Inclusion criteria are corrected gestational age \>26 week or \<34 week, age 2-36 h, clinically and radiologically diagnosed progressive RDS, FiO2 needed to maintain SaO2 85-95%; \>0.4, and no evident lung or cardiovascular malformation.

The surfactant aerosol will generate with a ultrasonic nebulizer (Aeroneb Pro; Aerogen, Inc., Sunnyvale, CA) and administer via the nasal continuous positive airway pressure (NCPAP) equipment into the Laryngeal Mask Airway (LMA). Surfactant will be diluted to 40 mg/ml with saline before nebulization. These modifications will be introduced to enhance the delivery of nebulized material to the lungs (3). In the control groups, the babies will be supported with the same type of NCPAP equipment, after given surfactant via endotracheal bolus application and MIST method. Parameters will be documented at three different times, namely before application of surfactant (200 mg/kg BW), and 2 h, 6 h after completion of nebulization or application of others.

The infants will be stabilised on NCPAP (Neopuff; Fisher and Paykel, Auckland, New Zealand) in the delivery room and during transport to the NICU. NCPAP or NIPPV will be started within 30 min of birth immediately after randomisation. Both NCPAP and NIPPV will be delivered by a neonatal ventilator (Engström Carestation; GE Healthcare, Madison, USA) via short, binasal Cannula (RAM Cannula; Neotech, Valencia, CA). NCPAP pressure will be set at 5-6 cm H2O, and NIPPV will be set in a non-synchronised mode at 20-30 bpm, with positive end-expiratory pressure of 5-6 cm H2O and peak inspiratory pressure of 15-20 cm H2O. FiO2 will be titrated at 0.21-0.50 to maintain an oxygen saturation level of 90%-95%, as measured via pulse oximeter. Under non-invasive ventilation, the surfactant will be administered as a rescue therapy if the infant required ≥0.40 FiO2 to maintain the target saturation level of 90%-95%.

Findings in chest radiograms before inclusion and head ultrasound images taken as soon as possible according to the clinical situation will be evaluated and graded according to criteria defined by Papile et al. (4) and Kero et al.(5) CLD will be defined as need for supplemental oxygen at 36 wk gestational age.

Statistical evaluation Data will be analyzed using the 20 Windows Version of Statistical Package for the Social Sciences (SPSS) Program (Chicago, IL, USA).

Data were compared using unpaired t-test and Chi-square test, and p-values below \<0.05 were considered statistically significant.

Ethical approval The study was approved by the regional ethics committee at the Yuzuncu Yil University Institute, Van, Turkey.

The regional ethics committee No: 05.05.2015/09

Recruitment & Eligibility

Status
UNKNOWN
Sex
All
Target Recruitment
75
Inclusion Criteria
  • Corrected gestational age >26 week or <34 week,
  • Age 2-36 h
  • Clinically and radiologically diagnosed progressive RDS,
  • FiO2 needed to maintain SaO2 85-95%; >0.4
  • No evident lung or cardiovascular malformation.
Exclusion Criteria
  • Corrected gestational age <26 week or >34 week,
  • Age >36 h
  • Premature babies with RDS but no breathing spontaneously
  • Evident lung or cardiovascular malformation.

Study & Design

Study Type
INTERVENTIONAL
Study Design
PARALLEL
Arm && Interventions
GroupInterventionDescription
Nebulized surfactantnasal continuous positive airway pressureFor randomisatio, each infant will be randomly assigned to nasal continuous positive airway pressure (NCPAP) or non-invasive intermittent positive-pressure ventilation (NIPPV), and than premature babies with RDS breathing spontaneously will be administered surfactant by nebulizer.
Nebulized surfactantnon-invasive intermittent positive-pressure ventilationFor randomisatio, each infant will be randomly assigned to nasal continuous positive airway pressure (NCPAP) or non-invasive intermittent positive-pressure ventilation (NIPPV), and than premature babies with RDS breathing spontaneously will be administered surfactant by nebulizer.
Nebulized surfactantsurfactantFor randomisatio, each infant will be randomly assigned to nasal continuous positive airway pressure (NCPAP) or non-invasive intermittent positive-pressure ventilation (NIPPV), and than premature babies with RDS breathing spontaneously will be administered surfactant by nebulizer.
Endotracheal bolus applicationNeopuffFor randomisatio, each infant will be randomly assigned to nasal continuous positive airway pressure (NCPAP) or non-invasive intermittent positive-pressure ventilation (NIPPV). The investigators will administer surfactant via fundamental method.
Minimally invasive surfactant therapyNeopuffFor randomisatio, each infant will be randomly assigned to nasal continuous positive airway pressure (NCPAP) or non-invasive intermittent positive-pressure ventilation (NIPPV). After randomisation, the investigators will administer surfactant via minimally invasive surfactant therapy (MIST) method which is recently very popular method
Nebulized surfactantneonatal ventilatorFor randomisatio, each infant will be randomly assigned to nasal continuous positive airway pressure (NCPAP) or non-invasive intermittent positive-pressure ventilation (NIPPV), and than premature babies with RDS breathing spontaneously will be administered surfactant by nebulizer.
Minimally invasive surfactant therapynon-invasive intermittent positive-pressure ventilationFor randomisatio, each infant will be randomly assigned to nasal continuous positive airway pressure (NCPAP) or non-invasive intermittent positive-pressure ventilation (NIPPV). After randomisation, the investigators will administer surfactant via minimally invasive surfactant therapy (MIST) method which is recently very popular method
Nebulized surfactantNeopuffFor randomisatio, each infant will be randomly assigned to nasal continuous positive airway pressure (NCPAP) or non-invasive intermittent positive-pressure ventilation (NIPPV), and than premature babies with RDS breathing spontaneously will be administered surfactant by nebulizer.
Endotracheal bolus applicationsurfactantFor randomisatio, each infant will be randomly assigned to nasal continuous positive airway pressure (NCPAP) or non-invasive intermittent positive-pressure ventilation (NIPPV). The investigators will administer surfactant via fundamental method.
Endotracheal bolus applicationnasal continuous positive airway pressureFor randomisatio, each infant will be randomly assigned to nasal continuous positive airway pressure (NCPAP) or non-invasive intermittent positive-pressure ventilation (NIPPV). The investigators will administer surfactant via fundamental method.
Endotracheal bolus applicationnon-invasive intermittent positive-pressure ventilationFor randomisatio, each infant will be randomly assigned to nasal continuous positive airway pressure (NCPAP) or non-invasive intermittent positive-pressure ventilation (NIPPV). The investigators will administer surfactant via fundamental method.
Endotracheal bolus applicationneonatal ventilatorFor randomisatio, each infant will be randomly assigned to nasal continuous positive airway pressure (NCPAP) or non-invasive intermittent positive-pressure ventilation (NIPPV). The investigators will administer surfactant via fundamental method.
Minimally invasive surfactant therapysurfactantFor randomisatio, each infant will be randomly assigned to nasal continuous positive airway pressure (NCPAP) or non-invasive intermittent positive-pressure ventilation (NIPPV). After randomisation, the investigators will administer surfactant via minimally invasive surfactant therapy (MIST) method which is recently very popular method
Minimally invasive surfactant therapynasal continuous positive airway pressureFor randomisatio, each infant will be randomly assigned to nasal continuous positive airway pressure (NCPAP) or non-invasive intermittent positive-pressure ventilation (NIPPV). After randomisation, the investigators will administer surfactant via minimally invasive surfactant therapy (MIST) method which is recently very popular method
Minimally invasive surfactant therapyneonatal ventilatorFor randomisatio, each infant will be randomly assigned to nasal continuous positive airway pressure (NCPAP) or non-invasive intermittent positive-pressure ventilation (NIPPV). After randomisation, the investigators will administer surfactant via minimally invasive surfactant therapy (MIST) method which is recently very popular method
Primary Outcome Measures
NameTimeMethod
The first objective of investigators is to assess the safety of surfactant nebulization in this clinical situation, and to find out whether treatment with aerosolized surfactant would reduce the need for mechanical ventilation.within the first 72 hour of life

The infants will be stabilised on NCPAP (Neopuff; Fisher and Paykel, Auckland, New Zealand) in the delivery room and during transport to the NICU. NCPAP or NIPPV will be started within 30 min of birth immediately after randomisation. Both NCPAP and NIPPV will be delivered by a neonatal ventilator (Engström Carestation; GE Healthcare, Madison, USA) via short, binasal Cannula (RAM Cannula; Neotech, Valencia, CA). NCPAP pressure will be set at 5-6 cm H2O, and NIPPV will be set in a non-synchronised mode at 20-30 bpm, with positive end-expiratory pressure of 5-6 cm H2O and peak inspiratory pressure of 15-20 cm H2O. FiO2 will be titrated at 0.21-0.50 to maintain an oxygen saturation level of 90%-95%, as measured via pulse oximeter. Under non-invasive ventilation, the surfactant will be administered as a rescue therapy if the infant required ≥0.40 FiO2 to maintain the target saturation level of 90%-95%.

Secondary Outcome Measures
NameTimeMethod
Necrotising enterocolitisWithin 3 months of life

Necrotising enterocolitis with the modified Bell's classification system

Patent ductus arteriosusIn 5 days of life

Echocardiography will be performed routinely for patent ductus arteriosus at a postnatal age of 48-96 h.

Retinopathy of prematurity (ROP)Up to 3 months of life

Retinopathy of prematurity (ROP) requiring laser treatment based on the criteria of the American Academy of Pediatrics, American Academy of Ophthalmology and American Association for Pediatric Ophthalmology and Strabismus.

Chronic Lung Disease (CLD)up to 36 weeks of post gestational age

Chronic Lung Disease (CLD) will be defined according to National Institutes of Health criteria.

Intraventricular haemorrhageWithin 1 month of life

We will assess for intraventricular haemorrhage higher than grade II using the Papile classification system

© Copyright 2025. All Rights Reserved by MedPath