Heart Failure Worsens Muscle Strength in COPD
- Conditions
- Muscle WeaknessCHFCOPD
- Interventions
- Diagnostic Test: isokinetic dynamometerDiagnostic Test: Cardiopulmonary Exercise TestDiagnostic Test: Functional Capacity TestsDiagnostic Test: Lung Function TestDiagnostic Test: Doppler EchocardiographyDiagnostic Test: Anthropometry and Body Composition
- Registration Number
- NCT04261452
- Lead Sponsor
- Mayron Faria de Oliveira
- Brief Summary
The combination of heart failure (HF) and chronic obstructive pulmonary disease (COPD) is highly prevalent, but underdiagnosed and poorly recognized. It has been suggested that the decline in functional capacity is associated with musculoskeletal and systemic changes than primary organ (heart and/or lung) failure. In addition, it is recognized that both diseases have several mechanisms that are responsible for musculoskeletal impairment. However, the association of reduced systemic perfusion with low oxygen content observed in the association of HF and COPD may contribute to the worsening of the components of the muscle impairment cascade. Thus, muscle strength and fatigue may not only be even more altered but may also be the main determinants of functional capacity in patients with coexistence of HF and COPD. Although many studies have evaluated the muscle performance of patients with HF or COPD, the literature did not show data on worsening due to the association of the diseases. Particularities identification of the muscle impairment in the coexistence of HF and COPD is fundamental for the development of rehabilitation strategies, mainly through physical exercise. In this line, the present study tested the hypothesis that the coexistence of HF and COPD could present lower values of strength and greater fatigue. Similarly, the muscle dysfunction degree could strongly correlate with the performance markers of the incremental or functional tests in patients with HF associated with COPD.
The study protocol was reviewed and approved by the Institutional Research Board. All subjects gave written informed consent before participating in the study.
- Detailed Description
Not available
Recruitment & Eligibility
- Status
- COMPLETED
- Sex
- All
- Target Recruitment
- 50
- non-cachectic sedentary patients
- moderate-to-severe COPD according to GOLD classification (FEV1/ FVC <0.7 and predicted post-bronchodilator FEV1 between 30% and 80%)
- no clinical or echocardiographic evidence of HF for the COPD group
- echocardiographic evidence of HF with reduced left ventricular ejection fraction (<40%) for the overlap group
- chronic dyspnoea (MRC scale score 2-4)
- NYHA class 2 or 3.
- long-term O2 therapy
- recent (within a year) rehabilitation program
- osteomuscular limitation
- type I or non-controlled type II diabetes mellitus
- peripheral arterial disease associated with claudication
- Patients with preserved ejection fraction HF
Study & Design
- Study Type
- INTERVENTIONAL
- Study Design
- FACTORIAL
- Arm && Interventions
Group Intervention Description COPD Anthropometry and Body Composition Body composition was assessed using a body composition. The same medical doctor performed all echocardiograms and all patients underwent comprehensive M-mode echocardiography. Spirometry, gas transfer and static lung volumes were measured in all patients. Resting blood gases were obtained by samples from the radial artery. The six-minute walk test and the four-minute step test were performed. All CPET tests were performed on an electronically braked cycle ergometer and standard metabolic and ventilatory responses were measured breath-by-breath using a calibrated, computer-based system. Knee flexors and extensors muscles were analysed by an isokinetic dynamometer. All patients performed two maximal isokinetic tests: 6 repetitions at 60°/s and 20 repetitions at 300°/s. Overlap isokinetic dynamometer Body composition was assessed using a body composition. The same medical doctor performed all echocardiograms and all patients underwent comprehensive M-mode echocardiography. Spirometry, gas transfer and static lung volumes were measured in all patients. Resting blood gases were obtained by samples from the radial artery. The six-minute walk test and the four-minute step test were performed. All CPET tests were performed on an electronically braked cycle ergometer and standard metabolic and ventilatory responses were measured breath-by-breath using a calibrated, computer-based system. Knee flexors and extensors muscles were analysed by an isokinetic dynamometer. All patients performed two maximal isokinetic tests: 6 repetitions at 60°/s and 20 repetitions at 300°/s. COPD isokinetic dynamometer Body composition was assessed using a body composition. The same medical doctor performed all echocardiograms and all patients underwent comprehensive M-mode echocardiography. Spirometry, gas transfer and static lung volumes were measured in all patients. Resting blood gases were obtained by samples from the radial artery. The six-minute walk test and the four-minute step test were performed. All CPET tests were performed on an electronically braked cycle ergometer and standard metabolic and ventilatory responses were measured breath-by-breath using a calibrated, computer-based system. Knee flexors and extensors muscles were analysed by an isokinetic dynamometer. All patients performed two maximal isokinetic tests: 6 repetitions at 60°/s and 20 repetitions at 300°/s. COPD Functional Capacity Tests Body composition was assessed using a body composition. The same medical doctor performed all echocardiograms and all patients underwent comprehensive M-mode echocardiography. Spirometry, gas transfer and static lung volumes were measured in all patients. Resting blood gases were obtained by samples from the radial artery. The six-minute walk test and the four-minute step test were performed. All CPET tests were performed on an electronically braked cycle ergometer and standard metabolic and ventilatory responses were measured breath-by-breath using a calibrated, computer-based system. Knee flexors and extensors muscles were analysed by an isokinetic dynamometer. All patients performed two maximal isokinetic tests: 6 repetitions at 60°/s and 20 repetitions at 300°/s. COPD Cardiopulmonary Exercise Test Body composition was assessed using a body composition. The same medical doctor performed all echocardiograms and all patients underwent comprehensive M-mode echocardiography. Spirometry, gas transfer and static lung volumes were measured in all patients. Resting blood gases were obtained by samples from the radial artery. The six-minute walk test and the four-minute step test were performed. All CPET tests were performed on an electronically braked cycle ergometer and standard metabolic and ventilatory responses were measured breath-by-breath using a calibrated, computer-based system. Knee flexors and extensors muscles were analysed by an isokinetic dynamometer. All patients performed two maximal isokinetic tests: 6 repetitions at 60°/s and 20 repetitions at 300°/s. COPD Lung Function Test Body composition was assessed using a body composition. The same medical doctor performed all echocardiograms and all patients underwent comprehensive M-mode echocardiography. Spirometry, gas transfer and static lung volumes were measured in all patients. Resting blood gases were obtained by samples from the radial artery. The six-minute walk test and the four-minute step test were performed. All CPET tests were performed on an electronically braked cycle ergometer and standard metabolic and ventilatory responses were measured breath-by-breath using a calibrated, computer-based system. Knee flexors and extensors muscles were analysed by an isokinetic dynamometer. All patients performed two maximal isokinetic tests: 6 repetitions at 60°/s and 20 repetitions at 300°/s. Overlap Cardiopulmonary Exercise Test Body composition was assessed using a body composition. The same medical doctor performed all echocardiograms and all patients underwent comprehensive M-mode echocardiography. Spirometry, gas transfer and static lung volumes were measured in all patients. Resting blood gases were obtained by samples from the radial artery. The six-minute walk test and the four-minute step test were performed. All CPET tests were performed on an electronically braked cycle ergometer and standard metabolic and ventilatory responses were measured breath-by-breath using a calibrated, computer-based system. Knee flexors and extensors muscles were analysed by an isokinetic dynamometer. All patients performed two maximal isokinetic tests: 6 repetitions at 60°/s and 20 repetitions at 300°/s. COPD Doppler Echocardiography Body composition was assessed using a body composition. The same medical doctor performed all echocardiograms and all patients underwent comprehensive M-mode echocardiography. Spirometry, gas transfer and static lung volumes were measured in all patients. Resting blood gases were obtained by samples from the radial artery. The six-minute walk test and the four-minute step test were performed. All CPET tests were performed on an electronically braked cycle ergometer and standard metabolic and ventilatory responses were measured breath-by-breath using a calibrated, computer-based system. Knee flexors and extensors muscles were analysed by an isokinetic dynamometer. All patients performed two maximal isokinetic tests: 6 repetitions at 60°/s and 20 repetitions at 300°/s. Overlap Functional Capacity Tests Body composition was assessed using a body composition. The same medical doctor performed all echocardiograms and all patients underwent comprehensive M-mode echocardiography. Spirometry, gas transfer and static lung volumes were measured in all patients. Resting blood gases were obtained by samples from the radial artery. The six-minute walk test and the four-minute step test were performed. All CPET tests were performed on an electronically braked cycle ergometer and standard metabolic and ventilatory responses were measured breath-by-breath using a calibrated, computer-based system. Knee flexors and extensors muscles were analysed by an isokinetic dynamometer. All patients performed two maximal isokinetic tests: 6 repetitions at 60°/s and 20 repetitions at 300°/s. Overlap Doppler Echocardiography Body composition was assessed using a body composition. The same medical doctor performed all echocardiograms and all patients underwent comprehensive M-mode echocardiography. Spirometry, gas transfer and static lung volumes were measured in all patients. Resting blood gases were obtained by samples from the radial artery. The six-minute walk test and the four-minute step test were performed. All CPET tests were performed on an electronically braked cycle ergometer and standard metabolic and ventilatory responses were measured breath-by-breath using a calibrated, computer-based system. Knee flexors and extensors muscles were analysed by an isokinetic dynamometer. All patients performed two maximal isokinetic tests: 6 repetitions at 60°/s and 20 repetitions at 300°/s. Overlap Anthropometry and Body Composition Body composition was assessed using a body composition. The same medical doctor performed all echocardiograms and all patients underwent comprehensive M-mode echocardiography. Spirometry, gas transfer and static lung volumes were measured in all patients. Resting blood gases were obtained by samples from the radial artery. The six-minute walk test and the four-minute step test were performed. All CPET tests were performed on an electronically braked cycle ergometer and standard metabolic and ventilatory responses were measured breath-by-breath using a calibrated, computer-based system. Knee flexors and extensors muscles were analysed by an isokinetic dynamometer. All patients performed two maximal isokinetic tests: 6 repetitions at 60°/s and 20 repetitions at 300°/s. Overlap Lung Function Test Body composition was assessed using a body composition. The same medical doctor performed all echocardiograms and all patients underwent comprehensive M-mode echocardiography. Spirometry, gas transfer and static lung volumes were measured in all patients. Resting blood gases were obtained by samples from the radial artery. The six-minute walk test and the four-minute step test were performed. All CPET tests were performed on an electronically braked cycle ergometer and standard metabolic and ventilatory responses were measured breath-by-breath using a calibrated, computer-based system. Knee flexors and extensors muscles were analysed by an isokinetic dynamometer. All patients performed two maximal isokinetic tests: 6 repetitions at 60°/s and 20 repetitions at 300°/s.
- Primary Outcome Measures
Name Time Method Cardiopulmonary function one week after all tests Exercise capacity will be assessed by the cardiopulmonary test. All data will be measured in absolute values (ml/kg) and the percentage of predicted values for the Brazilian population.
Clinical tests one day after all tests Performance in clinical tests will be assessed by 6MWT and 4-min Step test. All data will be measured in absolute values.
Muscle weakness one week after all tests Muscle performance will be assessed by an isokinetic dynamometer. All data will be measured in absolute values and the percentage of predicted values for the Brazilian population.
Body composition one day after all tests Fat-free mass will be assessed by body composition. All data will be measured in the percentage of predicted values for the Brazilian population.
Lung Function one day after all tests Clinical obstruction data will be assessed by total body plethysmography. All data will be measured in absolute values and percentage of predicted values for the Brazilian population.
Cardiac Function one day after all tests An echocardiogram will be performed to assess all cardiac functions. All data will be measured in the percentage of predicted values for the Brazilian population.
- Secondary Outcome Measures
Name Time Method