MedPath

Transplantation of Allogeneic MSC in Patients With Pulp Necrosis and Chronic Apical Periodontitis

Phase 2
Completed
Conditions
Pulp Necroses
Apical Periodontitis
Interventions
Biological: Allogenic transplant of BM-MSC in a root canal from patients with immature apexes and pulpar necrosis and apical periodontitis
Registration Number
NCT04545307
Lead Sponsor
Universidad Central de Venezuela
Brief Summary

The purpose of the study is to evaluate the effect of Mesenchymal Stromal Cell (MSC) implantation on pulp and periapical regeneration of immature teeth with pulp necrosis and chronic apical periodontitis.

BACKGROUND:

* Post-traumatic pulp necrosis prevents root development in children and adolescents.

* The multipotent ability of MSC to differentiate into bone-forming cells (osteoblasts) and dentin-forming cells (Odontoblast) has allowed the development of protocols to induce dental pulp regeneration in preclinical models and patients with immature teeth with pulpal necrosis.

IMPACT:

* Worldwide, post-traumatic pulp necrosis in children and adolescents constitutes a health problem in the endodontic area.

* Treatment with MSC would provide an effective therapeutic alternative to patients with pulp necrosis and incomplete root formation.

* The possible pulp and periapical regeneration of immature teeth induced by MSC would have a huge impact on the treatment of these patients.

Eligibility for EMC implant study Age: 6 to 16 years Sex: Male or Female Healthy volunteers accepted: NO.

TREATMENT GROUPS:

In the present study, the implantation of MSC will be performed in patients with immature teeth with pulpal necrosis with apical periodontitis, who will receive the appropriate endodontic treatment (according to the guidelines of the American Association of Endodontics) and implantation of allogeneic BM-MSC . This group will be compared with the history made in the Postgraduate Endodontics of the Universidad Central de Venezuela (UCV) and with international case series made by revascularization.

Clinical follow-up of each patient:

1. Clinical controls (facial evaluation, gingival evaluation, apical palpation, horizontal and vertical percussion, cold and heat sensitivity tests) will be carried out on days 0, 7, 30, 90, 180 and 364. Additionally, a clinical evaluation will be carried out at the two years post-implantation of MSC.

2. Radiological controls will be carried out on days 0, 7, 30, 90, 180 and 364. Additionally, they will be carried out two years post-implantation of MSC.

3. A tomographic evaluation will be performed when was evident periapical repair in a periapical radiograph. To measure root formation, root canal narrowing and verification the periapical repair in 3D.

Detailed Description

The endodontic procedure in the patients included in this study will focus on cases of pulp necrosis with apical periodontitis without evidence of infectious processes.

MATERIALS AND METHODS. Reagents Murine monoclonal antibodies, directed against human differentiation antigens (CD34, CD45, CD14, CD90, CD73, CD29, CD49b, CD166), conjugated to fluorescein isothiocyanate (CFI) or phycoerythrin (PE) were purchased from BD Biosciences (USA).

Isolation and culture of mesenchymal stromal cells (MSC) obtained from human bone marrow. In the present study, isolated EMFs from bone marrow (BM) from patients with a diagnosis of post-traumatic nonunion (failure of a bone union at fracture sites) will be used. These cells were transplanted into the pseudoarthrosis site to induce bone regeneration in these patients. The protocol for bone regeneration through EMF transplantation was carried out at the University Hospital of Caracas, Hospital Universitario de Los Andes, Hospital Pérez de León II and has the approval of the Bioethics Committees of each institution and each patient through informed consent. In this protocol, the BM of each patient was isolated by a puncture in the iliac crest. This procedure was performed in the operating room, under anesthesia and by a medical specialist. The MO aspirate was placed in alpha-MEM medium (Invitrogen, USA) with heparin (Sanofi Aventis). The mononuclear cells were separated by centrifugation on a Ficoll-Hypaque gradient (GE Healthcare, Sweden) and cultured in alpha-MEM-Chang medium (Irvine Scientific, USA) enriched with 20% autologous serum. These cells were kept in culture in a controlled environment at 37ºC and 5% CO2. After 72 hours, non-adherent cells were eliminated, and a basal culture medium (alpha-MEM-Chang / 20% autologous serum) was added. Their adherence to the plastic isolated the MSCs. Culture medium exchanges were made until reaching a confluence close to 70-80%. The MSCs were expanded by pealing the cultures, following the process described above. Microbiological examinations were performed after obtaining the BM and before performing the MSC implantation. After using MSC, a batch of these cells were cryopreserved at -70 -C.

Phenotypic characterization of MSC. Phenotypic characterization studies of MSC were carried out by flow cytometry. For which the MO adherent cells were detached from the culture flask by using trypsin-like enzymes. Subsequently, the cells were incubated with antibodies specific for MSC markers (CD90, CD73, CD105, CD29, CD166 and CD49b) and hematopoietic (CD34, CD45 and CD14). Cytometric analysis of the expression markers showed that 100% of the cells used for transplantation in each patient were MSC.

MSC differentiation studies. The multipotential differentiation capacity of MSCs was examined by culturing these cells in osteogenic, chondrogenic and adipogenic differentiation media, following a methodology similar to that previously described. Briefly, the MSCs were detached and seeded in 24-well culture plates at a cell density of 5x104 per well, proceeding to add the corresponding differentiation medium. For osteogenic differentiation, MSCs were cultured in the presence of basal medium enriched with dexamethasone (100nM, Biotech), ascorbic acid (10mM, Sigma), inorganic phosphate (1.8mM, Merck) and beta-glycerol phosphate (2mM, Sigma). For chondrogenic differentiation, cells were cultured in a commercial medium for chondrocytes (Cell Application, USA) and for differentiation towards the adipogenic lineage the commercial medium NH Adipodiff Human (Miltenyi, USA) was used. In all cases, the cells were kept in culture for 21-28 days with medium changes every 4-5 days. To demonstrate the changes associated with the differentiation process, the cells were fixed using paraformaldehyde (Merck, USA) and specific stains were performed for each case. Briefly, alizarin red to detect calcium deposition (evidence of osteogenesis), Alcian blue to detect proteoglycans (evidence of chondrogenesis), and oil red (Oil Red) to see lipids (evidence of adipogenesis). In all cases, microscopic observation and photographic registration were carried out. For endothelial differentiation (CEn), EMFs were cultured in MCDB 131 medium (Invitrogen, USA) enriched with 10% autologous serum, 10µg / ml of human epidermal growth factor (hu-EGF, R\&D) and hydrocortisone (1µg / ml, Sigma).

MSC implantation in patients with pulp necrosis and apical periodontitis. All MSC processing procedures will be carried out in the cleanroom of the IVIC Cell Therapy Unit following the standards of good manufacturing practice (GMP). Allogeneic BM-MSC from patients diagnosed with post-traumatic nonunion and treated with implantation of these cells will be used to induce bone regeneration. The MSC to be used in this protocol have previously been phenotypically and functionally characterized. The MSC will be thawed, grown and expanded as previously described. A part of the cells will be kept in a medium for MSCs, and another part will be cultured in endothelial differentiation medium (CEM-Endo). Once the required number of MSCs and MSCs-Endo have been reached, a suspension of these cells (75,000 cells from each of them) will be placed in sterile culture tubes containing DMEM-F12 culture medium, without phenol red, supplemented with 20% autologous serum. Each tube containing MSC / MSC-Endo will be transported in a small biological sample transport cellar, at room temperature, to the Dentistry Service of the Instituto Venezolano de Investigaciones Científicas (IVIC).

Under sterile conditions, the patient will be locally anesthetized in the affected tooth area; the root canal of the affected tooth will be exposed and prepared to perform the MSC / MSC-Endo / PRP implant. At the same time, the culture medium supernatant is removed from each tube and the CEM / CEM-Endo "button (pellet)" is resuspended in autologous platelet-rich plasma (PRP). Subsequently to the MSC / Endo / PRP suspension, 5% CaCl2 and thrombin will be added. Immediately, and before the clot forms, 20 microliters of the CEM / CEM-Endo / PRP suspension will be placed in the root canal, covered with a collagen membrane. Subsequently, the obturation procedure with bioceramics will be carried out at the level of the pulp chamber, ionomeric glass to protect the bioceramic and later composite resin to restore the tooth.

Post-implantation clinical evaluation of EMF

1. Clinical controls (facial evaluation, gingival evaluation, apical palpation, horizontal and vertical percussion, cold and heat sensitivity tests) will be carried out on days 0, 7, 30, 90, 180 and 364. Additionally, a clinical evaluation will be carried out at the two years post-implantation of EMC.

2. Radiological controls will be carried out on days 0, 7, 30, 90, 180 and 364. Additionally, they will be carried out two years post-implantation of mesenchymal stromal cells.

3. A tomographic evaluation will be performed when the periapical repair will be evident in a periapical radiograph.

Recruitment & Eligibility

Status
COMPLETED
Sex
All
Target Recruitment
5
Inclusion Criteria
  • Diagnosis of pulp necrosis and apical periodontitis in teeth with immature apices.
  • Informed consent by the patient's representative and consent by the patient to receive bone marrow allogeneic mesenchymal stromal cell transplantation treatment.
Exclusion Criteria
  • HIV positive
  • Hepatitits B or C positive
  • Autoimmune diseases: lupus, rheumatoid arthritis.
  • Neoplastic diseases.
  • Major metabolic disorders
  • Pregnancy
  • Being on steroid treatment
  • Other criteria that the researchers consider inappropriate for the inclusion of the patient

Study & Design

Study Type
INTERVENTIONAL
Study Design
SINGLE_GROUP
Arm && Interventions
GroupInterventionDescription
Allogenic transplant of BM-MSCsAllogenic transplant of BM-MSC in a root canal from patients with immature apexes and pulpar necrosis and apical periodontitisUnder sterile conditions, the patient will be locally anesthetized in the affected tooth area; the root canal of the affected tooth will be exposed and prepared to perform the MSC / MSC-Endo / PRP implant. At the same time, the culture medium supernatant is removed from each tube and the MSC / MSC-Endo "button (pellet)" is resuspended in autologous platelet-rich plasma (PRP). Subsequently to the MSC / MSC-Endo / PRP suspension, 5% CaCl2 and thrombin will be added. Immediately, and before the clot forms, 20 microliters of the MSC / MSC-Endo / PRP suspension will be placed in the root canal, covered with a collagen membrane. Subsequently, the obturation procedure with bioceramics will be carried out at the level of the pulp chamber, ionomeric glass to protect the bioceramic and later composite resin to restore the tooth.
Primary Outcome Measures
NameTimeMethod
Sings and Symptoms Absence15 days post implant

Through clinical inspection evaluate absence of fistula, intra or extra oral inflammation, no tender to percussion or a palpation

Root canal Narrowing6 to 12 months

Through periodical radiographs measure the root canal lumen months after months to evaluate any reduction of the lumen

Elongation of the root6 to 12 month

Through periodical radiographs measure the teeth length from the incisal border to the apex month after month to evaluate any increase of the root length

Sensitivity tests perception6 to 12 months

With the aid of pulpometer and Endo Ice evaluate if the patient start to feel any stimulation

Repair of the bone lesion produced by the apical periodontitis12 to 24 months

Through a periodical radiograph evaluate month after month the increase of radiopacity in the radiolucent area produced by the apical periodontitis. When an evident repair is confirmed a tomography study will be carry out to evaluate it in 3D

Secondary Outcome Measures
NameTimeMethod
Stability of bio ceramic cements used in the obturation of the access cavity6 to 12 months

Through periapical radiographs evaluate the maintenance of the bio ceramic cement in contact with the implant

Evaluate blood circulation within the root canal6 to 24 months

By means of pulse oximeter evaluate the increase of the activity

Trial Locations

Locations (1)

Unidad de Terapia Celular del Instituto de Investigaciones Científicas

🇻🇪

San Antonio de los Altos, Miranda, Venezuela

© Copyright 2025. All Rights Reserved by MedPath