MedPath

Safety and Imaging Study of GC1008 in Glioma

Phase 2
Completed
Conditions
Primary Brain Tumors
Interventions
Other: 89Zr-GC1008
Registration Number
NCT01472731
Lead Sponsor
University Medical Center Groningen
Brief Summary

Brain tumors account for only 2% of all cancers but result in a disproportionate share of cancer morbidity and mortality. The five-year survival rates for the most common histologic subtypes, anaplastic astrocytoma and glioblastoma (glioblastoma multiforme, GBM), are 30% and 10%, respectively.

Drugs affecting transforming growth factor-β (TGF-β) might be of great interest for malignant glioma treatment. TGF-β is an oncogenic factor in advanced tumors where it induces proliferation, angiogenesis, invasion, and metastasis as well as suppresses the antitumoral immune response. In addition TGF-β and its TGF-β receptors, TβRI and TβRII, are overexpressed in GBMs. TGF-β signaling is involved in multiple steps of GBM development. GC1008 is an antibody that is capable of neutralizing TGF-β and may therefore offer a new treatment option for patients with malignant glioma.

For therapeutic success, it may be essential for GC1008 to reach the target site, in this case located in the brain. We will be able to prove this with 89Zr-GC1008 PET imaging. This imaging method also allows quantification of the amount of GC1008 reaching the tumor.

This study consists of 2 parts. In part 1, patients with a suspicion of a malignant glioma undergo an 89Zr-GC1008 PET scan before standard (surgical)treatment. In part 2, patients with relapsed malignant glioma will undergo an 89Zr-GC1008 PET scan and will be treated with GC1008 in a phase II study as there is no standard treatment for these patients.

We hypothesize that GC1008 uptake in brain tumors can be visualized and quantified using the 89Zr-GC1008 PET scan and GC1008 might offer a new treatment option for patients with relapsed malignant gliomas.

Detailed Description

Brain tumors account for only 2% of all cancers but result in a disproportionate share of cancer morbidity and mortality. The five-year survival rates for the most common histologic subtypes, anaplastic astrocytoma and glioblastoma (glioblastoma multiforme, GBM), are 30% and 10%, respectively.

After surgery, the standard treatment of malignant glioma is focused on cell death induction by DNA damage, neglecting the fact that invasion into surrounding brain tissue is a fundamental feature of and the major reason for treatment failure.

Drugs affecting transforming growth factor-β (TGF-β) might be of great interest for malignant glioma treatment. The reason for this is the fact that TGF-β acts as a tumor suppressor in normal epithelial cells and early-stage tumors but transforms in an oncogenic factor in advanced tumors where it induces proliferation, angiogenesis, invasion, and metastasis as well as suppresses the antitumoral immune response. In addition TGF-β expression and its TGF-β receptors, TβRI and TβRII, are overexpressed in GBMs. TGF-β signaling is involved in multiple steps of GBM development (Golestaneh, Mishra, 2005) and invasion (Wesolowska et al, 2008). Plasma TGF-β levels are elevated in GBM patients and decrease after surgical tumor resection (Schneider et al, 2006). Progression-free survival and overall survival are worse for malignant glioma patients with high TGF-β signaling compared with glioma patients with low TGF-β signaling activity (Bruna et al, 2007). All these features make TGF-β a promising target molecule for biological treatment approaches for GBM (Wick et al, 2006). Phase I/II-studies with the TGF-β2-specific antisense oligodeoxynucleotide AP12009 in malignant glioma showed promising results (Hau et al, 2007). Another approach to target TGF-β is with monoclonal antibodies, such as GC1008. GC1008 is a fully human IgG4 kappa monoclonal antibody capable of neutralizing all mammalian isoforms of TGF-β (i.e., 1, 2, and 3). For therapeutic success, it may be essential for GC1008 to reach the target site, in this case located in the brain. Our own data with 89Zr-bevacizumab, which is also an IgG, showed that the VEGF directed antibody bevacizumab penetrates the brain and is localized in brain metastases. We therefore expect GC1008 to reach the malignant glioma as well. In order to initiate clinical trials with TGF-β antibody in these patients it would clearly be of great help to prove that the drug arrives at the tumor site. 89Zr-GC1008 PET imaging will allow us to prove this. In addition, PET imaging allows quantification of the amount of GC1008 reaching the malignant glioma. A phase II study with GC1008 in patients with relapsed malignant gliomas will be initiated as currently, there is no standard treatment available for these patients.

Study objectives:

Part 1: Feasibility of 89Zr-GC1008 PET imaging in patients with suspicion of a malignant glioma to assess if GC1008 penetrates into the brain tumor and to quantify its uptake.

Part 2: 89Zr-GC1008 PET imaging in patients with relapsed malignant glioma and phase II extension study with therapeutic GC1008 in these patients.

For part 1, 12 patients will be included. For part 2, 12-20 patients will be included.

Recruitment & Eligibility

Status
COMPLETED
Sex
All
Target Recruitment
12
Inclusion Criteria

Not provided

Exclusion Criteria

Not provided

Study & Design

Study Type
INTERVENTIONAL
Study Design
SINGLE_GROUP
Arm && Interventions
GroupInterventionDescription
GC1008 imaging and treatment89Zr-GC1008Part 1: Feasibility of 89Zr-GC1008 PET imaging in patients with suspicion of a malignant glioma to assess if GC1008 penetrates into the brain tumor and to quantify its uptake. Part 2: 89Zr-GC1008 PET imaging in patients with relapsed malignant glioma and phase II extension study with therapeutic GC1008 in these patients
GC1008 imaging and treatmentGC1008Part 1: Feasibility of 89Zr-GC1008 PET imaging in patients with suspicion of a malignant glioma to assess if GC1008 penetrates into the brain tumor and to quantify its uptake. Part 2: 89Zr-GC1008 PET imaging in patients with relapsed malignant glioma and phase II extension study with therapeutic GC1008 in these patients
Primary Outcome Measures
NameTimeMethod
Biomarker imaging2 years

Part 1, Biomarker imaging: 89Zr-GC1008 PET imaging in patients with suspicion of a malignant glioma:

Primary endpoint:

- Quantification of uptake of 89Zr-GC1008 as determined by PET imaging. The data obtained from the PET-scans will be quantified as standardized uptake value (SUV).

Quantification of uptake2 years

Part 2, In relapsed malignant glioma patients 89Zr-GC1008 PET imaging followed by participation in phase 2 study of GC1008

Primary endpoint:

- Quantification of uptake of 89Zr-GC1008 in relapsed malignant glioma patients as determined by PET imaging. The data obtained from the PET-scans will be quantified as standardized uptake value (SUV).

Secondary Outcome Measures
NameTimeMethod
Correlation of 89Zr-GC1008 tumor uptake2 years

Part 1, Biomarker imaging: 89Zr-GC1008 PET imaging in patients with suspicion of a malignant glioma:

Secondary endpoint:

- 89Zr-GC1008 biodistribution in humans.

Secondary endpoints Part 22 years

* Radiological Response Rate; measured by conventional MRI

* Overall survival (OS); assessed by clinical follow up

* 6-month progression-free survival (PFS) rate; assessed by clinical follow up

* Correlation of 89Zr-GC1008 tumor uptake pre-surgery and at relapse in the subgroup that underwent a 89Zr-GC1008 PET scan before primary surgery

* Number of patients with a positive PET scan as determined by quantification of uptake of 89Zr-GC1008 in relapsed malignant glioma patients.

* Correlation of 89Zr-GC1008 tumor uptake with treatment outcome.

Trial Locations

Locations (1)

University Medical Center Groningen

🇳🇱

Groningen, Netherlands

© Copyright 2025. All Rights Reserved by MedPath