MedPath

QSPainRelief-patientCNS : Clinical Biomarkers of Nociception, Sedation and Cognition

Not Applicable
Not yet recruiting
Conditions
Post-operative Pain
Interventions
Diagnostic Test: Scalp electroencephalography (EEG)
Diagnostic Test: Laser-evoked potentials (LEPs)
Diagnostic Test: Cognitive auditory-evoked potentials (P300)
Diagnostic Test: Cervical somatosensory-evoked potentials
Diagnostic Test: Pupillometry
Diagnostic Test: Saccadic Peak Velocity
Diagnostic Test: Adaptive tracking test
Diagnostic Test: Body Sway Test
Diagnostic Test: N-back working memory test
Other: Patient-reported outcomes
Registration Number
NCT04742790
Lead Sponsor
Université Catholique de Louvain
Brief Summary

QSPainRelief-patientCNS is a monocentric prospective longitudinal study conducted in patients suffering from disabling post-surgical pain for which the treating physician is about to prescribe a given drug combination for the treatment of their pain with the aim of identifying measures of drug-induced effects on CNS activity that could be used as biomarkers of real-life clinical outcome, both in terms of desired treatment effects (treatment-induced pain relief) but also in terms of undesired treatment effects (treatment-induced sedation and treatment-induced cognitive dysfunction).

Detailed Description

QSPainRelief-patientCNS is one of three clinical studies that will be conducted as part of the QSPainRelief project funded by the European Union's Horizon 2020 research and innovation program (grant agreement 848068; http://qspainrelief.eu).

Chronic pain is a complex disease affecting about 20% of Europeans, and up to 60% of patients with chronic pain do not experience adequate pain relief from currently available analgesic combinational therapies and/or suffer confounding adverse effects. Of the many conceivable combinations, only a few have been studied in formal clinical trials. Thus, physicians have to rely on clinical experience when treating chronic pain patients. The vision of the QSPainRelief project is that alternative novel drug combinations with improved analgesic and reduced adverse effects can be identified and assessed by mechanism-based Quantitative Systems Pharmacology (QSP) in silico modelling. The QSPainRelief consortium will setup, calibrate and validate an in silico QSPainRelief platform which integrates recently developed (1) physiologically based pharmacokinetic models to quantitate and adequately predict drug pharmacokinetics in human CNS, (2) target-binding kinetic models; (3) cellular signaling models and (4) a proprietary neural circuit model to quantitate the drug effects on the activity of relevant brain neuronal networks, that also adequately predicts clinical outcome.

Calibration of the QSPainRelief platform modelling the biological processes and neuronal circuits underlying the pain relief and adverse effects induced by drug combinations requires patient data on how different drug combinations affect the central processing of nociceptive input, the central processes underlying pain modulation, as well as the central nervous system (CNS) networks underlying drug-induced adverse effects. After calibration of the QSPainRelief platform, additional patient data is required to evaluate the ability of the platform to actually predict CNS effects of drug combinations in patients. Finally, real-world evidence is needed to relate the effects of drug combinations on CNS activity with the therapeutic and adverse effects self-reported by the patients.

The aims of the QSPainRelief-patientCNS study are thus two-fold.

The first aim is to obtain data from a first set of 60 patients to calibrate the QSPainRelief platform, and from a second set of 120 patients to evaluate the ability of the QSPainRelief platform to predict therapeutic and adverse effects of drug combinations. It will focus on pain relief and its impact on daily life activities as therapeutic effects, and on drug-induced sedation, drug-induced cognitive dysfunction (memory and attention) and pain medication misuse as adverse effects. These adverse effects have been chosen because (1) CNS biomarkers sensitive to drug-induced sedation and drug-induced cognitive dysfunction can be readily obtained using non-invasive measurements of the electroencephalogram (EEG) and (2) the chosen adverse effects can be assessed in patients after a short treatment period using validated patient-reported outcome measures (PROMs).

The second aim is to identify measures of drug-induced effects on CNS activity that could be used as biomarkers of real-life clinical outcome, both in terms of desired treatment effects (treatment-induced pain relief) but also in terms of undesired treatment effects (treatment-induced sedation and treatment-induced cognitive dysfunction).

Recruitment & Eligibility

Status
NOT_YET_RECRUITING
Sex
All
Target Recruitment
180
Inclusion Criteria
  • Aged 18-75 years.
  • Presence of disabling post-operative pain for more than two weeks following thoracotomy, sternotomy or breast cancer surgery.
  • Current treatment of their post-operative pain with an opioid analgesic (along with possible other drugs).
  • Decision by the treating physician to introduce an additional non-opioid treatment for their post-operative pain such as (but not necessarily) an antiepileptic or an anti-depressant.
  • Capacity to understand and voluntarily sign an informed consent form.
Exclusion Criteria
  • Insufficient French language skills.
  • Planned chemotherapy, hormonotherapy or radiotherapy during the time interval between Visits 1 and 2.
  • Clinically evident psychiatric disease that is likely to interfere with the study, according to judgment by the investigator.
  • History of peripheral or central nervous system disease before the surgical intervention.
  • Dermatological condition involving the sensory testing areas.
  • Severe alcohol use disorder (as defined in DSM-5).
  • Severe sedative, hypnotic of anxiolytic-related use disorder (as defined in DSM-5).
  • Any other mild, moderate or severe substance use disorder except tobacco and caffeine (as defined in DSM-5).
  • Consumption of recreational drugs, including cannabis, in the last 4 weeks prior to the study.
  • Signs of polyneuropathy at clinical examination.
  • Signs of a neurological deficit due to a CNS lesion or dysfunction at clinical examination.
  • Any other reason to exclude the subject because it may interfere with the study, according to judgment by the investigator. The reason will be documented.

Study & Design

Study Type
INTERVENTIONAL
Study Design
SINGLE_GROUP
Arm && Interventions
GroupInterventionDescription
PatientsCognitive auditory-evoked potentials (P300)The study will recruit volunteers (1) suffering from disabling post-operative pain for more than two weeks following surgery (thoracotomy, sternotomy and breast cancer surgery), (2) currently being treated for their post-operative pain with an opioid analgesic - along with possible other treatments - and (3) for which the treating physician is about to introduce an additional non-opioid drug for the treatment of their pain (e.g. an antiepileptic or an anti-depressant).
PatientsScalp electroencephalography (EEG)The study will recruit volunteers (1) suffering from disabling post-operative pain for more than two weeks following surgery (thoracotomy, sternotomy and breast cancer surgery), (2) currently being treated for their post-operative pain with an opioid analgesic - along with possible other treatments - and (3) for which the treating physician is about to introduce an additional non-opioid drug for the treatment of their pain (e.g. an antiepileptic or an anti-depressant).
PatientsCervical somatosensory-evoked potentialsThe study will recruit volunteers (1) suffering from disabling post-operative pain for more than two weeks following surgery (thoracotomy, sternotomy and breast cancer surgery), (2) currently being treated for their post-operative pain with an opioid analgesic - along with possible other treatments - and (3) for which the treating physician is about to introduce an additional non-opioid drug for the treatment of their pain (e.g. an antiepileptic or an anti-depressant).
PatientsAdaptive tracking testThe study will recruit volunteers (1) suffering from disabling post-operative pain for more than two weeks following surgery (thoracotomy, sternotomy and breast cancer surgery), (2) currently being treated for their post-operative pain with an opioid analgesic - along with possible other treatments - and (3) for which the treating physician is about to introduce an additional non-opioid drug for the treatment of their pain (e.g. an antiepileptic or an anti-depressant).
PatientsLaser-evoked potentials (LEPs)The study will recruit volunteers (1) suffering from disabling post-operative pain for more than two weeks following surgery (thoracotomy, sternotomy and breast cancer surgery), (2) currently being treated for their post-operative pain with an opioid analgesic - along with possible other treatments - and (3) for which the treating physician is about to introduce an additional non-opioid drug for the treatment of their pain (e.g. an antiepileptic or an anti-depressant).
PatientsPupillometryThe study will recruit volunteers (1) suffering from disabling post-operative pain for more than two weeks following surgery (thoracotomy, sternotomy and breast cancer surgery), (2) currently being treated for their post-operative pain with an opioid analgesic - along with possible other treatments - and (3) for which the treating physician is about to introduce an additional non-opioid drug for the treatment of their pain (e.g. an antiepileptic or an anti-depressant).
PatientsPatient-reported outcomesThe study will recruit volunteers (1) suffering from disabling post-operative pain for more than two weeks following surgery (thoracotomy, sternotomy and breast cancer surgery), (2) currently being treated for their post-operative pain with an opioid analgesic - along with possible other treatments - and (3) for which the treating physician is about to introduce an additional non-opioid drug for the treatment of their pain (e.g. an antiepileptic or an anti-depressant).
PatientsSaccadic Peak VelocityThe study will recruit volunteers (1) suffering from disabling post-operative pain for more than two weeks following surgery (thoracotomy, sternotomy and breast cancer surgery), (2) currently being treated for their post-operative pain with an opioid analgesic - along with possible other treatments - and (3) for which the treating physician is about to introduce an additional non-opioid drug for the treatment of their pain (e.g. an antiepileptic or an anti-depressant).
PatientsBody Sway TestThe study will recruit volunteers (1) suffering from disabling post-operative pain for more than two weeks following surgery (thoracotomy, sternotomy and breast cancer surgery), (2) currently being treated for their post-operative pain with an opioid analgesic - along with possible other treatments - and (3) for which the treating physician is about to introduce an additional non-opioid drug for the treatment of their pain (e.g. an antiepileptic or an anti-depressant).
PatientsN-back working memory testThe study will recruit volunteers (1) suffering from disabling post-operative pain for more than two weeks following surgery (thoracotomy, sternotomy and breast cancer surgery), (2) currently being treated for their post-operative pain with an opioid analgesic - along with possible other treatments - and (3) for which the treating physician is about to introduce an additional non-opioid drug for the treatment of their pain (e.g. an antiepileptic or an anti-depressant).
Primary Outcome Measures
NameTimeMethod
Correlation between change in magnitude of laser-evoked brain potentials (LEP) and change in the Brief Pain Inventory (BPI) pain severity scorethree months

To assess whether inter-individual differences in the drug-induced change in the magnitude of LEPs (in microvolts) predicts pain relief, the post-drug-combination vs. pre-drug-combination change in magnitude of LEPs between Visit 1 and Visit 2 (expressed as percentage of change between the two visits) will be correlated with the post-drug-combination minus pre-drug-combination change in the pain severity score obtained from the BPI (score between 0 and 40; Gjeilo et al., 2007) between Visit 1 and Month 3.

Correlation between change in the alpha attenuation coefficient (AAC) and change in the Stanford Sleepiness Scale (SSS)10 days

To assess whether inter-individual differences in the drug-induced change in AAC (ratio between alpha-band power eyes closed vs. eyes open; Kaida et al., 2006) predicts self-reported sleepiness, the post-drug-combination minus pre-drug combination change in the AAC measured in the resting EEG between Visits 1 and 2 will be correlated with the post-drug-combination minus pre-drug-combination change in self-reported sleepiness assessed using the Stanford Sleepiness Scale (SSS; score between 1 and 7) between Visits 1 and 2.

Correlation between change in magnitude of cognitive P3b potential and change in the PROMIS Neuro-QOL score for cognitive function10 days

To assess whether inter-individual differences in the drug-induced change in magnitude of the P3b component of auditory-evoked potentials (in microvolts; Komerchero \& Polich 1999) predicts self-reported cognitive dysfunction, the post-drug-combination vs. pre-drug-combination change in P3b magnitude between Visits 1 and 2 (expressed as percentage of change) will be correlated with the post-drug-combination minus pre-drug-combination change in self-reported cognitive dysfunction assessed using the short-form cognitive function measurement of the PROMIS Neuro-QOL (Quality of Life in Neurological Disorders) between Visits 1 and 2 (standardized T score for "cognitive function", having a mean of 50 and a standard deviation of 10 in a reference population).

Secondary Outcome Measures
NameTimeMethod
Correlation between change in magnitude of the N13 spinal-cord evoked potential and change in the PQ-NEURO score for neuropathic pain10 days

To assess whether inter-individual differences in the drug-induced change in magnitude of the N13 spinal-cord evoked potential (in microvolts; Cruccu et al., 2008) predicts changes in self-reported signs of neuropathic pain, the post-drug-combination vs. pre-drug-combination change in amplitude of the N13 (expressed as percentage of change) between Visits 1 and 2 will be correlated to the post-drug-combination minus pre-drug-combination change in the PROMIS measure of neuropathic pain quality (PQ-NEURO ; Askew et al. 2016) between Visits 1 and 2 (standardized T score with a mean of 50 and standard deviation of 10 in a reference population).

Correlation between change in the variation coefficient of pupillary dilation (VCPD) and change in the Brief Pain Inventory (BPI) score10 days

To assess whether inter-individual differences in the drug-induced change in the VCPD (Charier et al., 2017) predicts pain relief, the post-drug-combination vs. pre-drug-combination change in VCPD between Visits 1 and 2 will be correlated with the post-drug-combination minus pre-drug-combination change in the pain severity score obtained from the BPI (score between 0 and 40; Gjeilo et al., 2007) between Visits 1 and 2.

Correlation between change in pupil constriction velocity (PCV) and change in the Brief Pain Inventory (BPI) score10 days

To assess whether inter-individual differences in the drug-induced change in light-evoked PCV (in mm/s; Connely et al., 2014) predicts pain relief, the post-drug-combination minus pre-drug-combination change in PCV between Visits 1 and 2 (mm/s) will be correlated with the post-drug-combination minus pre-drug-combination change in the pain severity score obtained from the BPI (score between 0 and 40; Gjeilo et al., 2007) between Visits 1 and 2.

Correlation between change in saccadic peak velocity (SPV) and change in the Stanford Sleepiness Scale (SSS)10 days

To assess whether inter-individual differences in the drug-induced change in SPV predicts self-reported sleepiness, the post-drug-combination vs pre-drug combination change in SPV (m/s) between Visits 1 and 2 (expressed as percentage of change) will be correlated with the post-drug-combination minus pre-drug-combination change in self-reported sleepiness assessed using the Stanford Sleepiness Scale (SSS; score between 1 and 7) between Visits 1 and 2.

Correlation between change in performance of the 2-back working memory task (2-WM) and change in the PROMIS Neuro-QOL score for cognitive function10 days

To assess whether inter-individual differences in the drug-induced change in performance of the 2-WM (expressed as the discrimination index d-prime; Haatveit et al., 2010) predicts self-reported cognitive dysfunction, the post-drug-combination minus pre-drug-combination change in performance between Visits 1 and 2 will be correlated with the post-drug-combination minus pre-drug-combination change in self-reported cognitive dysfunction assessed using the short-form cognitive function measurement of the PROMIS Neuro-QOL (Quality of Life in Neurological Disorders) between Visits 1 and 2 (standardized T score for "cognitive function", having a mean of 50 and a standard deviation of 10 in a reference population).

Trial Locations

Locations (1)

Cliniques universitaires Saint-Luc

🇧🇪

Brussels, Belgium

© Copyright 2025. All Rights Reserved by MedPath