MedPath

Bone Marrow Angiogenesis in Acute Myeloid Leukemia - Evaluated by Dynamic Contrast Enhanced Magnetic Resonance (MR) Image

Conditions
Acute Myeloid Leukemia
Registration Number
NCT00172562
Lead Sponsor
National Taiwan University Hospital
Brief Summary

In malignant or neoplastic disease, angiogenesis is defined as the generation of new capillaries from preexisting blood vessels, e.g. by sprouting or by intusseption. Through the pioneering work of Folkman, it was recognized that angiogenesis plays an important role in tumor development, progression, and metastasis. It is also conceivable that there are forms or developmental stages of leukemia, multiple myeloma, or lymphomas that will progress independently of angiogenesis. Synthesis of angiogenesis activators, such as vascular endothelial growth factor (VEGF) and other angiogenic factors, such as basic fibroblast growth factor (bFGF), has been demonstrated for leukemia cells, non-Hodgkin's lymphoma, and myeloma cells. Microvessel density is also significantly elevated over normal controls with progressive increases according to the stages of myelodysplastic syndrome. Increased microvessel density (MVD) in the bone marrow was found in patients with multiple myeloma in comparison to normal controls and increased MVD is an adverse prognostic marker in multiple myeloma. However, the functional status of the blood vessel (e.g. permeability) cannot be determined by the above mentioned methods.

Detailed Description

In malignant or neoplastic disease, angiogenesis is defined as the generation of new capillaries from preexisting blood vessels, e.g. by sprouting or by intusseption. Through the pioneering work of Folkman, it was recognized that angiogenesis plays an important role in tumor development, progression, and metastasis. It is also conceivable that there are forms or developmental stages of leukemia, multiple myeloma, or lymphomas that will progress independently of angiogenesis. Synthesis of angiogenesis activators, such as vascular endothelial growth factor (VEGF) and other angiogenic factors, such as basic fibroblast growth factor (bFGF), has been demonstrated for leukemia cells, non-Hodgkin's lymphoma, and myeloma cells. Microvessel density is also significantly elevated over normal controls with progressive increases according to the stages of myelodysplastic syndrome. Increased microvessel density (MVD) in the bone marrow was found in patients with multiple myeloma in comparison to normal controls and increased MVD is an adverse prognostic marker in multiple myeloma. However, the functional status of the blood vessel (e.g. permeability) cannot be determined by the above mentioned methods.

Recruitment & Eligibility

Status
UNKNOWN
Sex
All
Target Recruitment
Not specified
Inclusion Criteria
  • Acute myeloid leukemia (AML) patients with intention to receive induction chemotherapy
  • Dynamic contrast-enhanced magnetic resonance imaging (dMRI) performed before, during and after complete course of induction chemotherapy
  • Age and sex matched normal volunteers
Read More
Exclusion Criteria
  • AML patients with palliative chemotherapy only
Read More

Study & Design

Study Type
OBSERVATIONAL
Study Design
Not specified
Primary Outcome Measures
NameTimeMethod
Secondary Outcome Measures
NameTimeMethod

Trial Locations

Locations (1)

Tiffany Ting-Fang Shih

🇨🇳

Taipei, Taiwan

© Copyright 2025. All Rights Reserved by MedPath