MedPath

Insulin Glulisine

Generic Name
Insulin Glulisine
Brand Names
Apidra
Drug Type
Biotech
CAS Number
207748-29-6
Unique Ingredient Identifier
7XIY785AZD

Overview

Insulin glulisine is a short-acting form of insulin used for the treatment of hyperglycemia caused by Type 1 and Type 2 Diabetes. Insulin is typically prescribed for the management of diabetes mellitus to mimic the activity of endogenously produced human insulin, a peptide hormone produced by beta cells of the pancreas that promotes glucose metabolism. Insulin is released from the pancreas following a meal to promote the uptake of glucose from the blood into internal organs and tissues such as the liver, fat cells, and skeletal muscle. Absorption of glucose into cells allows for its transformation into glycogen or fat for storage. Insulin also inhibits hepatic glucose production, enhances protein synthesis, and inhibits lipolysis and proteolysis among many other functions. Insulin is an important treatment in the management of Type 1 Diabetes (T1D) which is caused by an autoimmune reaction that destroys the beta cells of the pancreas, resulting in the body not being able to produce or synthesize the insulin needed to manage circulating blood sugar levels. As a result, people with T1D rely primarily on exogenous forms of insulin, such as insulin glulisine, to lower glucose levels in the blood. Insulin is also used in the treatment of Type 2 Diabetes (T2D), another form of diabetes mellitus that is a slowly progressing metabolic disorder caused by a combination of genetic and lifestyle factors that promote chronically elevated blood sugar levels. Without treatment or improvement in non-pharmacological measures such as diet and exercise to lower blood glucose, high blood sugar eventually causes cellular resistance to endogenous insulin, and in the long term, damage to pancreatic islet cells. Insulin is typically prescribed later in the course of T2D, after trying several oral medications such as Metformin, Gliclazide, or Sitagliptin have been tried, when sufficient damage has been caused to pancreatic cells that the body is no longer able to produce insulin on its own. Marketed as the brand name product Apidra, insulin glulisine begins to exert its effects within 15 minutes of subcutaneous administration, while peak levels occur 30 to 90 minutes after administration. Due to its duration of action of around 5 hours, Apidra is considered "bolus insulin" as it provides high levels of insulin in a short period of time to mimic the release of endogenous insulin from the pancreas after meals. Bolus insulin is often combined with once daily, long-acting "basal insulin" such as Insulin detemir, Insulin degludec, and Insulin glargine to provide low concentrations of background insulin that can keep blood sugar stable between meals or overnight. Use of basal and bolus insulin together is intended to mimic the pancreas' production of endogenous insulin, with a goal of avoiding any periods of hypoglycemia. Insulin glulisine is a biosynthetic, rapid-acting human insulin analogue produced in a non-pathogenic laboratory strain of Escherichia coli (K12). This recombinant hormone differs from native human insulin in that the amino acid asparagine at position B3 is replaced by lysine and the lysine at position B29 is replaced by glutamic acid. These structural modifications decrease hexamer formation, stabilize insulin glulisine monomers and increase the rate of absorption and onset of action compared to human insulin. Without an adequate supply of insulin to promote absorption of glucose from the bloodstream, blood sugar levels can climb to dangerously high levels and can result in symptoms such as fatigue, headache, blurred vision, and increased thirst. If left untreated, the body starts to break down fat, instead of glucose, for energy which results in a build-up of ketone acids in the blood and a syndrome called ketoacidosis, which is a life-threatening medical emergency. In the long term, elevated blood sugar levels increase the risk of heart attack, stroke, and diabetic neuropathy.

Background

Insulin glulisine is a short-acting form of insulin used for the treatment of hyperglycemia caused by Type 1 and Type 2 Diabetes. Insulin is typically prescribed for the management of diabetes mellitus to mimic the activity of endogenously produced human insulin, a peptide hormone produced by beta cells of the pancreas that promotes glucose metabolism. Insulin is released from the pancreas following a meal to promote the uptake of glucose from the blood into internal organs and tissues such as the liver, fat cells, and skeletal muscle. Absorption of glucose into cells allows for its transformation into glycogen or fat for storage. Insulin also inhibits hepatic glucose production, enhances protein synthesis, and inhibits lipolysis and proteolysis among many other functions. Insulin is an important treatment in the management of Type 1 Diabetes (T1D) which is caused by an autoimmune reaction that destroys the beta cells of the pancreas, resulting in the body not being able to produce or synthesize the insulin needed to manage circulating blood sugar levels. As a result, people with T1D rely primarily on exogenous forms of insulin, such as insulin glulisine, to lower glucose levels in the blood. Insulin is also used in the treatment of Type 2 Diabetes (T2D), another form of diabetes mellitus that is a slowly progressing metabolic disorder caused by a combination of genetic and lifestyle factors that promote chronically elevated blood sugar levels. Without treatment or improvement in non-pharmacological measures such as diet and exercise to lower blood glucose, high blood sugar eventually causes cellular resistance to endogenous insulin, and in the long term, damage to pancreatic islet cells. Insulin is typically prescribed later in the course of T2D, after trying several oral medications such as Metformin, Gliclazide, or Sitagliptin have been tried, when sufficient damage has been caused to pancreatic cells that the body is no longer able to produce insulin on its own. Marketed as the brand name product Apidra, insulin glulisine begins to exert its effects within 15 minutes of subcutaneous administration, while peak levels occur 30 to 90 minutes after administration. Due to its duration of action of around 5 hours, Apidra is considered "bolus insulin" as it provides high levels of insulin in a short period of time to mimic the release of endogenous insulin from the pancreas after meals. Bolus insulin is often combined with once daily, long-acting "basal insulin" such as Insulin detemir, Insulin degludec, and Insulin glargine to provide low concentrations of background insulin that can keep blood sugar stable between meals or overnight. Use of basal and bolus insulin together is intended to mimic the pancreas' production of endogenous insulin, with a goal of avoiding any periods of hypoglycemia. Insulin glulisine is a biosynthetic, rapid-acting human insulin analogue produced in a non-pathogenic laboratory strain of Escherichia coli (K12). This recombinant hormone differs from native human insulin in that the amino acid asparagine at position B3 is replaced by lysine and the lysine at position B29 is replaced by glutamic acid. These structural modifications decrease hexamer formation, stabilize insulin glulisine monomers and increase the rate of absorption and onset of action compared to human insulin. Without an adequate supply of insulin to promote absorption of glucose from the bloodstream, blood sugar levels can climb to dangerously high levels and can result in symptoms such as fatigue, headache, blurred vision, and increased thirst. If left untreated, the body starts to break down fat, instead of glucose, for energy which results in a build-up of ketone acids in the blood and a syndrome called ketoacidosis, which is a life-threatening medical emergency. In the long term, elevated blood sugar levels increase the risk of heart attack, stroke, and diabetic neuropathy.

Indication

用于治疗成人糖尿病。

Associated Conditions

  • Diabetes Mellitus
  • Type 1 Diabetes Mellitus
  • Hyperglycemia during critical illness

Clinical Trials

Title
Posted
Study ID
Phase
Status
Sponsor
2019/10/11
Phase 4
UNKNOWN
Medical University of Warsaw
2019/07/15
Phase 4
Completed
Medical University of Warsaw
2017/12/02
Phase 4
Completed
2017/11/01
Phase 4
Completed
Fundación Pública Andaluza para la Investigación de Málaga en Biomedicina y Salud
2016/09/26
Phase 4
Completed
Kinderkrankenhaus auf der Bult
2016/09/22
Phase 1
Completed
2016/02/18
Phase 4
UNKNOWN
Medical University of Warsaw
2015/07/21
Phase 2
Terminated
2015/05/04
Phase 1
Completed
2014/10/28
Phase 4
Completed
Amsterdam UMC, location VUmc

FDA Drug Approvals

Approved Product
Manufacturer
NDC Code
Route
Strength
Effective Date
sanofi-aventis U.S. LLC
0088-2500
SUBCUTANEOUS, INTRAVENOUS
100 [iU] in 1 mL
11/1/2022
sanofi-aventis U.S. LLC
0088-2502
SUBCUTANEOUS
100 [iU] in 1 mL
11/1/2022

HSA Drug Approvals

Approved Product
Manufacturer
Approval Number
Dosage Form
Strength
Approval Date
Apidra SoloStar 100 Units/ml Solution for injection in a pre-filled pen
SIN13432P
INJECTION, SOLUTION
3.49 mg (100 Units)
3/20/2008

NMPA Drug Approvals

Approved Product
Company
Approval Number
Drug Type
Dosage Form
Approval Date
No NMPA approvals found for this drug.

PPB Drug Approvals

Approved Product
Registration No.
Company
Licence No.
Strength
Registration Date
No PPB approvals found for this drug.
© Copyright 2025. All Rights Reserved by MedPath