MedPath

PACERONE

PACERONE (Amiodarone HCl) Tablets, 100 mg and 200 mg

Approved
Approval ID

bac761ca-9467-49d9-b6fc-b57cd27ee5f7

Product Type

HUMAN PRESCRIPTION DRUG LABEL

Effective Date

Jan 19, 2011

Manufacturers
FDA

Physicians Total Care, Inc.

DUNS: 194123980

Products 1

Detailed information about drug products covered under this FDA approval, including NDC codes, dosage forms, ingredients, and administration routes.

amiodarone hydrochloride

Product Details

FDA regulatory identification and product classification information

FDA Identifiers
NDC Product Code54868-5186
Application NumberANDA075135
Product Classification
M
Marketing Category
C73584
G
Generic Name
amiodarone hydrochloride
Product Specifications
Route of AdministrationORAL
Effective DateMay 12, 2011
FDA Product Classification

INGREDIENTS (9)

FD&C RED NO. 40Inactive
Code: WZB9127XOA
Classification: IACT
AMIODARONE HYDROCHLORIDEActive
Quantity: 200 mg in 1 1
Code: 976728SY6Z
Classification: ACTIB
LACTOSE MONOHYDRATEInactive
Code: EWQ57Q8I5X
Classification: IACT
MAGNESIUM STEARATEInactive
Code: 70097M6I30
Classification: IACT
POVIDONEInactive
Code: FZ989GH94E
Classification: IACT
STARCH, CORNInactive
Code: O8232NY3SJ
Classification: IACT
SODIUM STARCH GLYCOLATE TYPE A POTATOInactive
Code: 5856J3G2A2
Classification: IACT
STEARIC ACIDInactive
Code: 4ELV7Z65AP
Classification: IACT
FD&C YELLOW NO. 6Inactive
Code: H77VEI93A8
Classification: IACT

Drug Labeling Information

ADVERSE REACTIONS SECTION

LOINC: 34084-4Updated: 1/19/2011

ADVERSE REACTIONS

Adverse reactions have been very common in virtually all series of patients treated with amiodarone HCl for ventricular arrhythmias with relatively large doses of drug (400 mg/day and above), occurring in about three-fourths of all patients and causing discontinuation in 7 to 18%. The most serious reactions are pulmonary toxicity, exacerbation of arrhythmia and rare serious liver injury (see**"WARNINGS"**), but other adverse effects constitute important problems. They are often reversible with dose reduction or cessation of amiodarone treatment. Most of the adverse effects appear to become more frequent with continued treatment beyond six months, although rates appear to remain relatively constant beyond one year. The time and dose relationships of adverse effects are under continued study.

Neurologic problems are extremely common, occurring in 20 to 40% of patients and including malaise and fatigue, tremor and involuntary movements, poor coordination and gait, and peripheral neuropathy; they are rarely a reason to stop therapy and may respond to dose reductions or discontinuation (see "PRECAUTIONS"). There have been spontaneous reports of demyelinating polyneuropathy.

Gastrointestinal complaints, most commonly nausea, vomiting, constipation and anorexia, occur in about 25% of patients but rarely require discontinuation of drug. These commonly occur during high-dose administration (i.e., loading dose) and usually respond to dose reduction or divided doses.

Ophthalmic abnormalities including optic neuropathy and/or optic neuritis, in some cases progressing to permanent blindness, papilledema, corneal degeneration, photosensitivity, eye discomfort, scotoma, lens opacities and macular degeneration have been reported (see**"WARNINGS"**).

Asymptomatic corneal microdeposits are present in virtually all adult patients who have been on drug for more than 6 months. Some patients develop eye symptoms of halos, photophobia and dry eyes. Vision is rarely affected and drug discontinuation is rarely needed.

Dermatological adverse reactions occur in about 15% of patients, with photosensitivity being most common (about 10%). Sunscreen and protection from sun exposure may be helpful, and drug discontinuation is not usually necessary. Prolonged exposure to amiodarone occasionally results in a blue- gray pigmentation. This is slowly and occasionally incompletely reversible on discontinuation of drug but is of cosmetic importance only.

Cardiovascular adverse reactions, other than exacerbation of the arrhythmias, include the uncommon occurrence of congestive heart failure (3%) and bradycardia. Bradycardia usually responds to dosage reduction but may require a pacemaker for control. CHF rarely requires drug discontinuation. Cardiac conduction abnormalities occur infrequently and are reversible on discontinuation of drug.

The following side-effect rates are based on a retrospective study of 241 patients treated for 2 to 1,515 days (mean 441.3 days).

The following side effects were each reported in 10 to 33% of patients:

Gastrointestinal: Nausea and vomiting.

The following side effects were each reported in 4 to 9% of patients:

Dermatologic: Solar dermatitis/photosensitivity.
Neurologic: Malaise and fatigue, tremor/abnormal involuntary movements, lack of coordination, abnormal gait/ataxia, dizziness, paresthesias.
Gastrointestinal: Constipation, anorexia.
Ophthalmologic: Visual disturbances.
Hepatic: Abnormal liver-function tests.
Respiratory: Pulmonary inflammation or fibrosis.

The following side effects were each reported in 1 to 3% of patients:

Thyroid: Hypothyroidism, hyperthyroidism.
Neurologic: Decreased libido, insomnia, headache, sleep disturbances.
Cardiovascular: Congestive heart failure, cardiac arrhythmias, SA node dysfunction.
Gastrointestinal: Abdominal pain.
Hepatic: Nonspecific hepatic disorders.
Other: Flushing, abnormal taste and smell, edema, abnormal salivation, coagulation abnormalities.

The following side effects were each reported in less than 1% of patients:

Blue skin discoloration, rash, spontaneous ecchymosis, alopecia, hypotension and cardiac conduction abnormalities.

In surveys of almost 5,000 patients treated in open U.S. studies and in published reports of treatment with amiodarone HCl, the adverse reactions most frequently requiring discontinuation of amiodarone included pulmonary infiltrates or fibrosis, paroxysmal ventricular tachycardia, congestive heart failure and elevation of liver enzymes. Other symptoms causing discontinuations less often included visual disturbances, solar dermatitis, blue skin discoloration, hyperthyroidism and hypothyroidism.

Postmarketing Reports

In postmarketing surveillance, hypotension (sometimes fatal), sinus arrest, anaphylactic/anaphylactoid reaction (including shock), angioedema, urticaria, eosinophilic pneumonia, hepatitis, cholestatic hepatitis, cirrhosis, pancreatitis, renal impairment, renal insufficiency, acute renal failure, bronchospasm, possibly fatal respiratory disorders (including distress, failure, arrest, and ARDS), bronchiolitis obliterans organizing pneumonia (possibly fatal), fever, dyspnea, cough, hemoptysis, wheezing, hypoxia, pulmonary infiltrates and/or mass, pulmonary alveolar hemorrhage, pleural effusion, pleuritis, pseudotumor cerebri, parkinsonian symptoms such as akinesia and bradykinesia (sometimes reversible with discontinuation of therapy), syndrome of inappropriate antidiuretic hormone secretion (SIADH), thyroid nodules/thyroid cancer, toxic epidermal necrolysis (sometimes fatal), erythema multiforme, Stevens-Johnson syndrome, exfoliative dermatitis, drug rash with eosinophilia and systemic symptoms (DRESS), eczema, skin cancer, vasculitis, pruritus, hemolytic anemia, aplastic anemia, pancytopenia, neutropenia, thrombocytopenia, agranulocytosis, granuloma, myopathy, muscle weakness, rhabdomyolysis, demyelinating polyneuropathy, hallucination, confusional state, disorientation, delirium, epididymitis, and impotence, also have been reported with amiodarone therapy.

WARNINGS SECTION

LOINC: 34071-1Updated: 1/19/2011

WARNINGS

Pacerone®(Amiodarone HCl) Tablets are intended for use only in patients with the indicated life-threatening arrhythmias because amiodarone use is accompanied by substantial toxicity.

Amiodarone has several potentially fatal toxicities, the most important of which is pulmonary toxicity (hypersensitivity pneumonitis or interstitial/alveolar pneumonitis) that has resulted in clinically manifest disease at rates as high as 10 to 17% in some series of patients with ventricular arrhythmias given doses around 400 mg/day, and as abnormal diffusion capacity without symptoms in a much higher percentage of patients. Pulmonary toxicity has been fatal about 10% of the time. Liver injury is common with amiodarone, but is usually mild and evidenced only by abnormal liver enzymes. Overt liver disease can occur, however, and has been fatal in a few cases. Like other antiarrhythmics, amiodarone can exacerbate the arrhythmia, e.g., by making the arrhythmia less well tolerated or more difficult to reverse. This has occurred in 2 to 5% of patients in various series, and significant heart block or sinus bradycardia has been seen in 2 to 5%. All of these events should be manageable in the proper clinical setting in most cases. Although the frequency of such proarrhythmic events does not appear greater with amiodarone than with many other agents used in this population, the effects are prolonged when they occur.

Even in patients at high risk of arrhythmic death, in whom the toxicity of amiodarone is an acceptable risk, Pacerone®Tablets pose major management problems that could be life-threatening in a population at risk of sudden death, so that every effort should be made to utilize alternative agents first.

The difficulty of using Pacerone®Tablets effectively and safely itself poses a significant risk to patients. Patients with the indicated arrhythmias must be hospitalized while the loading dose of Pacerone®Tablets is given, and a response generally requires at least one week, usually two or more. Because absorption and elimination are variable, maintenance-dose selection is difficult, and it is not unusual to require dosage decrease or discontinuation of treatment. In a retrospective survey of 192 patients with ventricular tachyarrhythmias, 84 required dose reduction and 18 required at least temporary discontinuation because of adverse effects, and several series have reported 15 to 20% overall frequencies of discontinuation due to adverse reactions. The time at which a previously controlled life-threatening arrhythmia will recur after discontinuation or dose adjustment is unpredictable, ranging from weeks to months. The patient is obviously at great risk during this time and may need prolonged hospitalization. Attempts to substitute other antiarrhythmic agents when Pacerone®** Tablets must be stopped will be made difficult by the gradually, but unpredictably, changing amiodarone body burden. A similar problem exists when amiodarone is not effective; it still poses the risk of an interaction with whatever subsequent treatment is tried.**

Mortality

In the National Heart, Lung and Blood Institute's Cardiac Arrhythmia Suppression Trial (CAST), a long-term, multi-centered, randomized, double- blind study in patients with asymptomatic non-life-threatening ventricular arrhythmias who had had myocardial infarctions more than six days but less than two years previously, an excessive mortality or non-fatal cardiac arrest rate was seen in patients treated with encainide or flecainide (56/730) compared with that seen in patients assigned to matched placebo-treated groups (22/725). The average duration of treatment with encainide or flecainide in this study was ten months.

Amiodarone therapy was evaluated in two multi-centered, randomized, double- blind, placebo-controlled trials involving 1202 (Canadian Amiodarone Myocardial Infarction Arrhythmia Trial; CAMIAT) and 1486 (European Myocardial Infarction Amiodarone Trial; EMIAT) post-MI patients followed for up to 2 years. Patients in CAMIAT qualified with ventricular arrhythmias, and those randomized to amiodarone received weight- and response-adjusted doses of 200 to 400 mg/day. Patients in EMIAT qualified with ejection fraction <40%, and those randomized to amiodarone received fixed doses of 200 mg/day. Both studies had weeks-long loading dose schedules. Intent-to-treat all-cause mortality results were as follows:

Placebo

Amiodarone

Relative Risk

N

Deaths

N

Deaths

95% CI

EMIAT

743

102

743

103

0.99

0.76-1.31

CAMIAT

596

68

606

57

0.88

0.58-1.16

These data are consistent with the results of a pooled analysis of smaller, controlled studies involving patients with structural heart disease (including myocardial infarction).

Pulmonary Toxicity

There have been post-marketing reports of acute-onset (days to weeks) pulmonary injury in patients treated with oral amiodarone with or without initial I.V. therapy. Findings have included pulmonary infiltrates and/or mass on X-ray, pulmonary alveolar hemorrhage, pleural effusion, bronchospasm, wheezing, fever, dyspnea, cough, hemoptysis, and hypoxia. Some cases have progressed to respiratory failure and/or death. Post-marketing reports describe cases of pulmonary toxicity in patients treated with low doses of amiodarone; however, reports suggest that the use of lower loading and maintenance doses of amiodarone are associated with a decreased incidence of amiodarone-induced pulmonary toxicity.

Amiodarone HCl Tablets may cause a clinical syndrome of cough and progressive dyspnea accompanied by functional, radiographic, gallium-scan, and pathological data consistent with pulmonary toxicity, the frequency of which varies from 2 to 7% in most published reports, but is as high as 10 to 17% in some reports. Therefore, when Pacerone® Tablets therapy is initiated, a baseline chest X-ray and pulmonary-function tests, including diffusion capacity, should be performed. The patient should return for a history, physical exam and chest X-ray every 3 to 6 months.

Pulmonary toxicity secondary to amiodarone seems to result from either indirect or direct toxicity as represented by hypersensitivity pneumonitis (including eosinophilic pneumonia) or interstitial/alveolar pneumonitis, respectively.

Patients with preexisting pulmonary disease have a poorer prognosis if pulmonary toxicity develops.

Hypersensitivity pneumonitis usually appears earlier in the course of therapy and rechallenging these patients with Pacerone® Tablets results in a more rapid recurrence of greater severity.

Bronchoalveolar lavage is the procedure of choice to confirm this diagnosis, which can be made when a T suppressor/cytotoxic (CD8-positive) lymphocytosis is noted. Steroid therapy should be instituted and Pacerone® Tablets therapy discontinued in these patients.

Interstitial/alveolar pneumonitis may result from the release of oxygen radicals and/or phospholipidosis and is characterized by findings of diffuse alveolar damage, interstitial pneumonitis or fibrosis in lung biopsy specimens. Phospholipidosis (foamy cells, foamy macrophages), due to inhibition of phospholipase, will be present in most cases of amiodarone- induced pulmonary toxicity; however, these changes also are present in approximately 50% of all patients on amiodarone therapy. These cells should be used as markers of therapy, but not as evidence of toxicity. A diagnosis of amiodarone-induced interstitial/alveolar pneumonitis should lead, at a minimum, to dose reduction or, preferably, to withdrawal of Pacerone® Tablets to establish reversibility, especially if other acceptable antiarrhythmic therapies are available. Where these measures have been instituted, a reduction in symptoms of amiodarone-induced pulmonary toxicity was usually noted within the first week, and a clinical improvement was greatest in the first two to three weeks. Chest X-ray changes usually resolve within two to four months. According to some experts, steroids may prove beneficial. Prednisone in doses of 40 to 60 mg/day or equivalent doses of other steroids have been given and tapered over the course of several weeks depending upon the condition of the patient. In some cases rechallenge with amiodarone at a lower dose has not resulted in return of toxicity.

In a patient receiving Pacerone® Tablets, any new respiratory symptoms should suggest the possibility of pulmonary toxicity, and the history, physical exam, chest X-ray and pulmonary-function tests (with diffusion capacity) should be repeated and evaluated. A 15% decrease in diffusion capacity has a high sensitivity but only a moderate specificity for pulmonary toxicity; as the decrease in diffusion capacity approaches 30%, the sensitivity decreases but the specificity increases. A gallium-scan also may be performed as part of the diagnostic workup.

Fatalities, secondary to pulmonary toxicity, have occurred in approximately 10% of cases. However, in patients with life-threatening arrhythmias, discontinuation of Pacerone® Tablets therapy due to suspected drug-induced pulmonary toxicity should be undertaken with caution, as the most common cause of death in these patients is sudden cardiac death. Therefore, every effort should be made to rule out other causes of respiratory impairment (i.e., congestive heart failure with Swan-Ganz catheterization if necessary, respiratory infection, pulmonary embolism, malignancy, etc.) before discontinuing Pacerone® Tablets in these patients. In addition, bronchoalveolar lavage, transbronchial lung biopsy and/or open lung biopsy may be necessary to confirm the diagnosis, especially in those cases where no acceptable alternative therapy is available.

If a diagnosis of amiodarone-induced hypersensitivity pneumonitis is made, Pacerone® Tablets should be discontinued, and treatment with steroids should be instituted. If a diagnosis of amiodarone-induced interstitial/alveolar pneumonitis is made, steroid therapy should be instituted and, preferably, Pacerone® Tablets discontinued or, at a minimum, reduced in dosage. Some cases of amiodarone-induced interstitial/alveolar pneumonitis may resolve following a reduction in Pacerone® Tablets dosage in conjunction with the administration of steroids. In some patients, rechallenge at a lower dose has not resulted in return of interstitial/alveolar pneumonitis; however, in some patients (perhaps because of severe alveolar damage) the pulmonary lesions have not been reversible.

Worsened Arrhythmia

Amiodarone, like other antiarrhythmics, can cause serious exacerbation of the presenting arrhythmia, a risk that may be enhanced by the presence of concomitant antiarrhythmics. Exacerbation has been reported in about 2 to 5% in most series, and has included new ventricular fibrillation, incessant ventricular tachycardia, increased resistance to cardioversion and polymorphic ventricular tachycardia associated with QTc prolongation (Torsade de Pointes [TdP]). In addition, amiodarone has caused symptomatic bradycardia or sinus arrest with suppression of escape foci in 2 to 4% of patients.

Fluoroquinolones, macrolide antibiotics, and azoles are known to cause QTc prolongation. There have been reports of QTc prolongation, with or without TdP, in patients taking amiodarone when fluoroquinolones, macrolide antibiotics, or azoles were administered concomitantly. (See "Drug Interactions, Other reported interactions with amiodarone".)

The need to co-administer amiodarone with any other drug known to prolong the QTc interval must be based on a careful assessment of the potential risks and benefits of doing so for each patient.

A careful assessment of the potential risks and benefits of administering Pacerone® Tablets must be made in patients with thyroid dysfunction due to the possibility of arrhythmia breakthrough or exacerbation of arrhythmia in these patients.

Implantable Cardiac Devices

In patients with implanted defibrillators or pacemakers, chronic administration of antiarrhythmic drugs may affect pacing or defibrillating thresholds. Therefore, at the inception of and during amiodarone treatment, pacing and defibrillation thresholds should be assessed.

Thyrotoxicosis

Amiodarone-induced hyperthyroidism may result in thyrotoxicosis and/or the possibility of arrhythmia breakthrough or aggravation. There have been reports of death associated with amiodarone-induced thyrotoxicosis. IF ANY NEW SIGNS OF ARRHYTHMIA APPEAR, THE POSSIBILITY OF HYPERTHYROIDISM SHOULD BE CONSIDERED (see**"PRECAUTIONS, Thyroid Abnormalities"**).

Liver Injury

Elevations of hepatic enzyme levels are seen frequently in patients exposed to amiodarone and in most cases are asymptomatic. If the increase exceeds three times normal, or doubles in a patient with an elevated baseline, discontinuation of Pacerone® Tablets or dosage reduction should be considered. In a few cases in which biopsy has been done, the histology has resembled that of alcoholic hepatitis or cirrhosis. Hepatic failure has been a rare cause of death in patients treated with amiodarone.

Loss of Vision

Cases of optic neuropathy and/or optic neuritis, usually resulting in visual impairment, have been reported in patients treated with amiodarone. In some cases, visual impairment has progressed to permanent blindness. Optic neuropathy and/or neuritis may occur at any time following initiation of therapy. A causal relationship to the drug has not been clearly established. If symptoms of visual impairment appear, such as changes in visual acuity and decreases in peripheral vision, prompt ophthalmic examination is recommended. Appearance of optic neuropathy and/or neuritis calls for re-evaluation of Pacerone® Tablets therapy. The risks and complications of antiarrhythmic therapy with Pacerone® Tablets must be weighed against its benefits in patients whose lives are threatened by cardiac arrhythmias. Regular ophthalmic examination, including funduscopy and slit-lamp examination, is recommended during administration of Pacerone® Tablets (see**"ADVERSE REACTIONS"**).

Neonatal Hypo- or Hyperthyroidism

Amiodarone can cause fetal harm when administered to a pregnant woman. Although amiodarone use during pregnancy is uncommon, there have been a small number of published reports of congenital goiter/hypothyroidism and hyperthyroidism. If Pacerone® (Amiodarone HCl) Tablets are used during pregnancy, or if the patient becomes pregnant while taking Pacerone® Tablets, the patient should be apprised of the potential hazard to the fetus.

In general, Pacerone® Tablets should be used during pregnancy only if the potential benefit to the mother justifies the unknown risk to the fetus.

In pregnant rats and rabbits, amiodarone HCl in doses of 25 mg/kg/day (approximately 0.4 and 0.9 times, respectively, the maximum recommended human maintenance dose*) had no adverse effects on the fetus. In the rabbit, 75 mg/kg/day (approximately 2.7 times the maximum recommended human maintenance dose*) caused abortions in greater than 90% of the animals. In the rat, doses of 50 mg/kg/day or more were associated with slight displacement of the testes and an increased incidence of incomplete ossification of some skull and digital bones; at 100 mg/kg/day or more, fetal body weights were reduced; at 200 mg/kg/day, there was an increased incidence of fetal resorption. (These doses in the rat are approximately 0.8, 1.6 and 3.2 times the maximum recommended human maintenance dose.) Adverse effects on fetal growth and survival also were noted in one of two strains of mice at a dose of 5 mg/kg/day (approximately 0.04 times the maximum recommended human maintenance dose).

*600 mg in a 50 kg patient (doses compared on a body surface area basis)

PRECAUTIONS SECTION

LOINC: 42232-9Updated: 1/19/2011

PRECAUTIONS

Impairment of Vision

Optic Neuropathy and/or Neuritis

Cases of optic neuropathy and optic neuritis have been reported (see "WARNINGS").

Corneal Microdeposits

Corneal microdeposits appear in the majority of adults treated with amiodarone. They are usually discernible only by slit-lamp examination, but give rise to symptoms such as visual halos or blurred vision in as many as 10% of patients. Corneal microdeposits are reversible upon reduction of dose or termination of treatment. Asymptomatic microdeposits alone are not a reason to reduce dose or discontinue treatment (see**"ADVERSE REACTIONS"**).

Neurologic

Chronic administration of oral amiodarone in rare instances may lead to the development of peripheral neuropathy that may resolve when amiodarone is discontinued, but this resolution has been slow and incomplete.

Photosensitivity

Amiodarone has induced photosensitization in about 10% of patients; some protection may be afforded by the use of sun-barrier creams or protective clothing. During long-term treatment, a blue-gray discoloration of the exposed skin may occur. The risk may be increased in patients of fair complexion or those with excessive sun exposure, and may be related to cumulative dose and duration of therapy.

Thyroid Abnormalities

Amiodarone inhibits peripheral conversion of thyroxine (T4) to triiodothyronine (T3) and may cause increased thyroxine levels, decreased T3 levels and increased levels of inactive reverse T3 (rT3) in clinically euthyroid patients. It is also a potential source of large amounts of inorganic iodine. Because of its release of inorganic iodine, or perhaps for other reasons, amiodarone can cause either hypothyroidism or hyperthyroidism. Thyroid function should be monitored prior to treatment and periodically thereafter, particularly in elderly patients, and in any patient with a history of thyroid nodules, goiter or other thyroid dysfunction. Because of the slow elimination of amiodarone and its metabolites, high plasma iodide levels, altered thyroid function and abnormal thyroid-function tests may persist for several weeks or even months following Pacerone® (Amiodarone HCl) Tablets withdrawal.

Hypothyroidism has been reported in 2 to 4% of patients in most series, but in 8 to 10% in some series. This condition may be identified by relevant clinical symptoms and particularly by elevated serum TSH levels. In some clinically hypothyroid amiodarone-treated patients, free thyroxine index values may be normal. Hypothyroidism is best managed by Pacerone® Tablets dose reduction and/or thyroid hormone supplement. However, therapy must be individualized, and it may be necessary to discontinue Pacerone® Tablets in some patients.

Hyperthyroidism occurs in about 2% of patients receiving amiodarone, but the incidence may be higher among patients with prior inadequate dietary iodine intake. Amiodarone-induced hyperthyroidism usually poses a greater hazard to the patient than hypothyroidism because of the possibility of thyrotoxicosis and/or arrhythmia breakthrough or aggravation, all of which may result in death. There have been reports of death associated with amiodarone-induced thyrotoxicosis. IF ANY NEW SIGNS OF ARRHYTHMIA APPEAR, THE POSSIBILITY OF HYPERTHYROIDISM SHOULD BE CONSIDERED.

Hyperthyroidism is best identified by relevant clinical symptoms and signs, accompanied usually by abnormally elevated levels of serum T3 RIA, and further elevations of serum T4, and a subnormal serum TSH level (using a sufficiently sensitive TSH assay). The finding of a flat TSH response to TRH is confirmatory of hyperthyroidism and may be sought in equivocal cases. Since arrhythmia breakthroughs may accompany amiodarone-induced hyperthyroidism, aggressive medical treatment is indicated, including, if possible, dose reduction or withdrawal of Pacerone® Tablets.

The institution of antithyroid drugs, β-adrenergic blockers and/or temporary corticosteroid therapy may be necessary. The action of antithyroid drugs may be especially delayed in amiodarone-induced thyrotoxicosis because of substantial quantities of preformed thyroid hormones stored in the gland. Radioactive iodine therapy is contraindicated because of the low radioiodine uptake associated with amiodarone-induced hyperthyroidism. Amiodarone-induced hyperthyroidism may be followed by a transient period of hypothyroidism (see "WARNINGS, Thyrotoxicosis").

When aggressive treatment of amiodarone-induced thyrotoxicosis has failed or amiodarone cannot be discontinued because it is the only drug effective against the resistant arrhythmia, surgical management may be an option. Experience with thyroidectomy as a treatment for amiodarone-induced thyrotoxicosis is limited, and this form of therapy could induce thyroid storm. Therefore, surgical and anesthetic management require careful planning.

There have been postmarketing reports of thyroid nodules/thyroid cancer in patients treated with amiodarone. In some instances hyperthyroidism was also present (see**"WARNINGS"** and "ADVERSE REACTIONS").

Surgery

Volatile Anesthetic Agents: Close perioperative monitoring is recommended in patients undergoing general anesthesia who are on amiodarone therapy as they may be more sensitive to the myocardial depressant and conduction effects of halogenated inhalational anesthetics.

Hypotension Postbypass: Rare occurrences of hypotension upon discontinuation of cardiopulmonary bypass during open-heart surgery in patients receiving amiodarone have been reported. The relationship of this event to Pacerone® Tablets therapy is unknown.

Adult Respiratory Distress Syndrome (ARDS): Postoperatively, occurrences of ARDS have been reported in patients receiving amiodarone therapy who have undergone either cardiac or noncardiac surgery. Although patients usually respond well to vigorous respiratory therapy, in rare instances the outcome has been fatal. Until further studies have been performed, it is recommended that FiO2 and the determinants of oxygen delivery to the tissues (e.g., SaO2, PaO2) be closely monitored in patients on amiodarone.

Corneal Refractive Laser Surgery

Patients should be advised that most manufacturers of corneal refractive laser surgery devices contraindicate that procedure in patients taking amiodarone.

Information for Patients

Patients should be instructed to read the accompanying Medication Guide each time they refill their prescription. The complete text of the Medication Guide is reprinted at the end of this document.

Laboratory Tests

Elevations in liver enzymes (SGOT and SGPT) can occur. Liver enzymes in patients on relatively high maintenance doses should be monitored on a regular basis. Persistent significant elevations in the liver enzymes or hepatomegaly should alert the physician to consider reducing the maintenance dose of Pacerone® Tablets or discontinuing therapy.

Amiodarone alters the results of thyroid-function tests, causing an increase in serum T4 and serum reverse T3, and a decline in serum T3 levels. Despite these biochemical changes, most patients remain clinically euthyroid.

Drug Interactions

Amiodarone is metabolized to desethylamiodarone by the cytochrome P450 (CYP450) enzyme group, specifically cytochrome P450 3A4 (CYP3A4) and CYP2C8. The CYP3A4 isoenzyme is present in both the liver and intestines (see "CLINICAL PHARMACOLOGY, Pharmacokinetics"). Amiodarone is an inhibitor of CYP3A4 and p-glycoprotein. Therefore, amiodarone has the potential for interactions with drugs or substances that may be substrates, inhibitors or inducers of CYP3A4 and substrates of p-glycoprotein. While only a limited number of in vivo drug-drug interactions with amiodarone have been reported, the potential for other interactions should be anticipated. This is especially important for drugs associated with serious toxicity, such as other antiarrhythmics. If such drugs are needed, their dose should be reassessed and, where appropriate, plasma concentration measured. In view of the long and variable half-life of amiodarone, potential for drug interactions exists, not only with concomitant medication, but also with drugs administered after discontinuation of amiodarone.

Since amiodarone is a substrate for CYP3A4 and CYP2C8, drugs/substances that inhibit CYP3A4 may decrease the metabolism and increase serum concentrations of amiodarone. Reported examples include the following:

Protease inhibitors:

Protease inhibitors are known to inhibit CYP3A4 to varying degrees. A case report of one patient taking amiodarone 200 mg and indinavir 800 mg three times a day resulted in increases in amiodarone concentrations from 0.9 mg/L to 1.3 mg/L. DEA concentrations were not affected. There was no evidence of toxicity. Monitoring for amiodarone toxicity and serial measurement of amiodarone serum concentration during concomitant protease inhibitor therapy should be considered.

Histamine H1 antagonists:

Loratadine, a non-sedating antihistaminic, is metabolized primarily by CYP3A4. QT interval prolongation and Torsade de Pointes have been reported with the co-administration of loratadine and amiodarone.

Histamine H2 antagonists:

Cimetidine inhibits CYP3A4 and can increase serum amiodarone levels.

Antidepressants:

Trazodone, an antidepressant, is metabolized primarily by CYP3A4. QT interval prolongation and Torsade de Pointes have been reported with the co- administration of trazodone and amiodarone.

Other substances:

Grapefruit juice given to healthy volunteers increased amiodarone AUC by 50% and Cmax by 84%, and decreased DEA to unquantifiable concentrations. Grapefruit juice inhibits CYP3A4-mediated metabolism of oral amiodarone in the intestinal mucosa, resulting in increased plasma levels of amiodarone; therefore, grapefruit juice should not be taken during treatment with oral amiodarone. This information should be considered when changing from intravenous amiodarone to oral amiodarone (see "DOSAGE AND ADMINISTRATION").

Amiodarone inhibits p-glycoprotein and certain CYP450 enzymes, including CYP1A2, CYP2C9, CYP2D6, and CYP3A4. This inhibition can result in unexpectedly high plasma levels of other drugs which are metabolized by those CYP450 enzymes or are substrates of p-glycoprotein. Reported examples of this interaction include the following:

Immunosuppressives:

Cyclosporine (CYP3A4 substrate) administered in combination with oral amiodarone has been reported to produce persistently elevated plasma concentrations of cyclosporine resulting in elevated creatinine, despite reduction in dose of cyclosporine.

HMG-CoA Reductase Inhibitors:

HMG-CoA reductase inhibitors that are CYP3A4 substrates (including simvastatin and atorvastatin) in combination with amiodarone have been associated with reports of myopathy/rhabdomyolysis.

When co-administered with amiodarone, lower starting and maintenance doses of these agents should be considered.

Cardiovasculars:

Cardiac glycosides: In patients receivingdigoxin therapy, administration of oral amiodarone regularly results in an increase in the serum digoxin concentration that may reach toxic levels with resultant clinical toxicity. Amiodarone taken concomitantly with digoxin increases the serum digoxin concentration by 70% after one day.On initiation of oral amiodarone, the need for digitalis therapy should be reviewed and the dose reduced by approximately 50% or discontinued. If digitalis treatment is continued, serum levels should be closely monitored and patients observed for clinical evidence of toxicity. These precautions probably should apply to digitoxin administration as well.

Antiarrhythmics**:**
****Other antiarrhythmic drugs, such asquinidine, procainamide, disopyramide andphenytoin, have been used concurrently with oral amiodarone.

There have been case reports of increased steady-state levels of quinidine, procainamide and phenytoin during concomitant therapy with amiodarone. Phenytoin decreases serum amiodarone levels. Amiodarone taken concomitantly with quinidine increases quinidine serum concentration by 33% after two days. Amiodarone taken concomitantly with procainamide for less than seven days increases plasma concentrations of procainamide and n-acetyl procainamide by 55% and 33%, respectively. Quinidine and procainamide doses should be reduced by one-third when either is administered with amiodarone. Plasma levels of flecainide have been reported to increase in the presence of oral amiodarone; because of this, the dosage of flecainide should be adjusted when these drugs are administered concomitantly. In general, any added antiarrhythmic drug should be initiated at a lower than usual dose with careful monitoring.

Combination of amiodarone with other antiarrhythmic therapy should be reserved for patients with life-threatening ventricular arrhythmias who are incompletely responsive to a single agent or incompletely responsive to amiodarone. During transfer to amiodarone, the dose levels of previously administered agents should be reduced by 30 to 50% several days after the addition of amiodarone, when arrhythmia suppression should be beginning. The continued need for the other antiarrhythmic agent should be reviewed after the effects of amiodarone have been established, and discontinuation ordinarily should be attempted. If the treatment is continued, these patients should be particularly carefully monitored for adverse effects, especially conduction disturbances and exacerbation of tachyarrhythmias, as amiodarone is continued. In amiodarone-treated patients who require additional antiarrhythmic therapy, the initial dose of such agents should be approximately half of the usual recommended dose.

Antihypertensives:
Amiodarone should be used with caution in patients receivingβ-receptor blocking agents (e.g., propranolol, a CYP3A4 inhibitor) orcalcium channel antagonists (e.g., verapamil, a CYP3A4 substrate, and diltiazem, a CYP3A4 inhibitor) because of the possible potentiation of bradycardia, sinus arrest and AV block; if necessary, amiodarone can continue to be used after insertion of a pacemaker in patients with severe bradycardia or sinus arrest.

Anticoagulants:
Potentiation ofwarfarin-type (CYP2C9 and CYP3A4 substrate) anticoagulant response is almost always seen in patients receiving amiodarone and can result in serious or fatal bleeding. Since the concomitant administration of warfarin with amiodarone increases the prothrombin time by 100% after 3 to 4 days, the dose of the anticoagulant should be reduced by one-third to one-half, and prothrombin times should be monitored closely.

Clopidogrel, an inactive thienopyridine prodrug, is metabolized in the liver by CYP3A4 to an active metabolite. A potential interaction between clopidogrel and amiodarone resulting in ineffective inhibition of platelet aggregation has been reported.

Some drugs/substances are known to accelerate the metabolism of amiodarone by stimulating the synthesis of CYP3A4 (enzyme induction). This may lead to low amiodarone serum levels and potential decrease in efficacy. Reported examples of this interaction include the following:

Antibiotics:

Rifampin is a potent inducer of CYP3A4. Administration of rifampin concomitantly with oral amiodarone has been shown to result in decreases in serum concentrations of amiodarone and desethylamiodarone.

Other substances, including herbal preparations:

St. John's Wort (Hypericum perforatum) induces CYP3A4. Since amiodarone is a substrate for CYP3A4, there is the potential that the use of St. John's Wort in patients receiving amiodarone could result in reduced amiodarone levels.

Other reported interactions with amiodarone:

Fentanyl (CYP3A4 substrate) in combination with amiodarone may cause hypotension, bradycardia, and decreased cardiac output.

Sinus bradycardia has been reported with oral amiodarone in combination with lidocaine (CYP3A4 substrate) given for local anesthesia. Seizure, associated with increased lidocaine concentrations, has been reported with concomitant administration of intravenous amiodarone.

Dextromethorphan is a substrate for both CYP2D6 and CYP3A4. Amiodarone inhibits CYP2D6.

Cholestyramine increases enterohepatic elimination of amiodarone and may reduce its serum levels and t½.

Disopyramide increases QT prolongation which could cause arrhythmia.

Fluoroquinolones, macrolide antibiotics, and azoles are known to cause QTc prolongation. There have been reports of QTc prolongation, with or without TdP, in patients taking amiodarone when fluoroquinolones, macrolide antibiotics, or azoles were administered concomitantly. (See**"WARNINGS, Worsened Arrhythmia".**)

Hemodynamic and electrophysiologic interactions have also been observed after concomitant administration withpropranolol, diltiazem andverapamil.

Volatile Anesthetic Agents (See**"PRECAUTIONS, Surgery, Volatile Anesthetic Agents**").

In addition to the interactions noted above, chronic (>2 weeks)oral amiodarone administration impairs metabolism of phenytoin, dextromethorphan and methotrexate.

Electrolyte Disturbances

Since antiarrhythmic drugs may be ineffective or may be arrhythmogenic in patients with hypokalemia, any potassium or magnesium deficiency should be corrected before instituting and during Pacerone® (Amiodarone HCl) Tablets therapy. Use caution when coadministering Pacerone® Tablets with drugs which may induce hypokalemia and/or hypomagnesemia.

Carcinogenesis, Mutagenesis, Impairment of Fertility

Amiodarone HCl was associated with a statistically significant, dose-related increase in the incidence of thyroid tumors (follicular adenoma and/or carcinoma) in rats. The incidence of thyroid tumors was greater than control even at the lowest dose level tested, i.e., 5 mg/kg/day (approximately 0.08 times the maximum recommended human maintenance dose*).

Mutagenicity studies (Ames, micronucleus and lysogenic tests) with amiodarone were negative.

In a study in which amiodarone HCl was administered to male and female rats, beginning 9 weeks prior to mating, reduced fertility was observed at a dose level of 90 mg/kg/day (approximately 1.4 times the maximum recommended human maintenance dose*).

*600 mg in a 50 kg patient (dose compared on a body surface area basis)

Pregnancy: Pregnancy Category D

See**"WARNINGS, Neonatal Hypo- or Hyperthyroidism"**.

Labor and Delivery

It is not known whether the use of Pacerone® Tablets during labor or delivery has any immediate or delayed adverse effects. Preclinical studies in rodents have not shown any effect of amiodarone on the duration of gestation or on parturition.

Nursing Mothers

Amiodarone and one of its major metabolites, desethylamiodarone (DEA), are excreted in human milk, suggesting that breast-feeding could expose the nursing infant to a significant dose of the drug. Nursing offspring of lactating rats administered amiodarone have been shown to be less viable and have reduced body-weight gains. Therefore, when Pacerone® Tablets therapy is indicated, the mother should be advised to discontinue nursing.

Pediatric Use

The safety and effectiveness of Pacerone® (Amiodarone HCl) Tablets in pediatric patients have not been established.

Geriatric Use

Clinical studies of amiodarone HCl tablets did not include sufficient numbers of subjects aged 65 and over to determine whether they respond differently from younger subjects. Other reported clinical experience has not identified differences in responses between the elderly and younger patients. In general, dose selection for an elderly patient should be cautious, usually starting at the low end of the dosing range, reflecting the greater frequency of decreased hepatic, renal or cardiac function, and of concomitant disease or other drug therapy.

DOSAGE & ADMINISTRATION SECTION

LOINC: 34068-7Updated: 1/19/2011

DOSAGE AND ADMINISTRATION

BECAUSE OF THE UNIQUE PHARMACOKINETIC PROPERTIES, DIFFICULT DOSING SCHEDULE AND SEVERITY OF THE SIDE EFFECTS IF PATIENTS ARE IMPROPERLY MONITORED, PACERONE® TABLETS SHOULD BE ADMINISTERED ONLY BY PHYSICIANS WHO ARE EXPERIENCED IN THE TREATMENT OF LIFE-THREATENING ARRHYTHMIAS WHO ARE THOROUGHLY FAMILIAR WITH THE RISKS AND BENEFITS OF AMIODARONE THERAPY, AND WHO HAVE ACCESS TO LABORATORY FACILITIES CAPABLE OF ADEQUATELY MONITORING THE EFFECTIVENESS AND SIDE EFFECTS OF TREATMENT.

In order to insure that an antiarrhythmic effect will be observed without waiting several months, loading doses are required. A uniform, optimal dosage schedule for administration of Pacerone® Tablets has not been determined. Because of the food effect on absorption, Pacerone® Tablets should be administered consistently with regard to meals (see**"CLINICAL PHARMACOLOGY"**). Individual patient titration is suggested according to the following guidelines:

For life-threatening ventricular arrhythmias, such as ventricular fibrillation or hemodynamically unstable ventricular tachycardia: Close monitoring of the patients is indicated during the loading phase, particularly until risk of recurrent ventricular tachycardia or fibrillation has abated. Because of the serious nature of the arrhythmia and the lack of predictable time course of effect, loading should be performed in a hospital setting. Loading doses of 800 to 1,600 mg/day are required for 1 to 3 weeks (occasionally longer) until initial therapeutic response occurs. (Administration of Pacerone® Tablets in divided doses with meals is suggested for total daily doses of 1,000 mg or higher, or when gastrointestinal intolerance occurs.) If side effects become excessive, the dose should be reduced. Elimination of recurrence of ventricular fibrillation and tachycardia usually occurs within 1 to 3 weeks, along with reduction in complex and total ventricular ectopic beats.

Since grapefruit juice is known to inhibit CYP3A4-mediated metabolism of oral amiodarone in the intestinal mucosa, resulting in increased plasma levels of amiodarone, grapefruit juice should not be taken during treatment with oral amiodarone (see**"PRECAUTIONS, Drug Interactions"**).

Upon starting Pacerone® Tablets therapy, an attempt should be made to gradually discontinue prior antiarrhythmic drugs (see section on "Drug Interactions"). When adequate arrhythmia control is achieved, or if side effects become prominent, Pacerone® Tablets dose should be reduced to 600 to 800 mg/day for one month and then to the maintenance dose, usually 400 mg/day (see**"CLINICAL PHARMACOLOGY, Monitoring Effectiveness"). Some patients may require larger maintenance doses, up to 600 mg/day, and some can be controlled on lower doses. Pacerone® Tablets may be administered as a single daily dose, or in patients with severe gastrointestinal intolerance, as a b.i.d. dose. In each patient, the chronic maintenance dose should be determined according to antiarrhythmic effect as assessed by symptoms, Holter recordings and/or programmed electrical stimulation, and by patient tolerance. Plasma concentrations may be helpful in evaluating nonresponsiveness or unexpectedly severe toxicity (see"CLINICAL PHARMACOLOGY"**).

The lowest effective dose should be used to prevent the occurrence of side effects. In all instances, the physician must be guided by the severity of the individual patient's arrhythmia and response to therapy.

When dosage adjustments are necessary, the patient should be closely monitored for an extended period of time because of the long and variable half-life of amiodarone and the difficulty in predicting the time required to attain a new steady-state level of drug. Dosage suggestions are summarized below:

Loading Dose
(Daily)

Adjustment and
Maintenance Dose (Daily)

Ventricular
Arrhythmias

1 to 3 weeks

~1 month

usual
maintenance

800 to 1,600 mg

600 to 800 mg

400 mg

MedPath

Empowering clinical research with data-driven insights and AI-powered tools.

© 2025 MedPath, Inc. All rights reserved.

PACERONE - FDA Drug Approval Details