MedPath

Esomeprazole Magnesium

These highlights do not include all the information needed to use ESOMEPRAZOLE MAGNESIUM DELAYED-RELEASE CAPSULES safely and effectively. See full prescribing information for ESOMEPRAZOLE MAGNESIUM DELAYED-RELEASE CAPSULES. ESOMEPRAZOLE MAGNESIUM delayed-release capsules, for oral use Initial U.S. Approval: 1989 (omeprazole)

Approved
Approval ID

e5540d90-0b6e-4519-9272-c6e96730967b

Product Type

HUMAN PRESCRIPTION DRUG LABEL

Effective Date

Feb 1, 2023

Manufacturers
FDA

Proficient Rx LP

DUNS: 079196022

Products 1

Detailed information about drug products covered under this FDA approval, including NDC codes, dosage forms, ingredients, and administration routes.

Esomeprazole Magnesium

Product Details

FDA regulatory identification and product classification information

FDA Identifiers
NDC Product Code63187-964
Application NumberANDA078279
Product Classification
M
Marketing Category
C73584
G
Generic Name
Esomeprazole Magnesium
Product Specifications
Route of AdministrationORAL
Effective DateFebruary 1, 2023
FDA Product Classification

INGREDIENTS (20)

Esomeprazole MagnesiumActive
Quantity: 20 mg in 1 1
Code: R6DXU4WAY9
Classification: ACTIM
Magnesium StearateInactive
Code: 70097M6I30
Classification: IACT
HYPROMELLOSE, UNSPECIFIEDInactive
Code: 3NXW29V3WO
Classification: IACT
Methacrylic AcidInactive
Code: 1CS02G8656
Classification: IACT
Glyceryl MonostearateInactive
Code: 230OU9XXE4
Classification: IACT
Polysorbate 80Inactive
Code: 6OZP39ZG8H
Classification: IACT
TalcInactive
Code: 7SEV7J4R1U
Classification: IACT
Triethyl CitrateInactive
Code: 8Z96QXD6UM
Classification: IACT
GELATIN, UNSPECIFIEDInactive
Code: 2G86QN327L
Classification: IACT
Fd&C Blue No. 1Inactive
Code: H3R47K3TBD
Classification: IACT
Titanium DioxideInactive
Code: 15FIX9V2JP
Classification: IACT
AmmoniaInactive
Code: 5138Q19F1X
Classification: IACT
Ferrosoferric OxideInactive
Code: XM0M87F357
Classification: IACT
Butyl AlcoholInactive
Code: 8PJ61P6TS3
Classification: IACT
Potassium HydroxideInactive
Code: WZH3C48M4T
Classification: IACT
ShellacInactive
Code: 46N107B71O
Classification: IACT
AlcoholInactive
Code: 3K9958V90M
Classification: IACT
Propylene GlycolInactive
Code: 6DC9Q167V3
Classification: IACT
HYDROXYPROPYL CELLULOSE (1600000 WAMW)Inactive
Code: RFW2ET671P
Classification: IACT
Isopropyl AlcoholInactive
Code: ND2M416302
Classification: IACT

Drug Labeling Information

WARNINGS AND PRECAUTIONS SECTION

LOINC: 43685-7Updated: 2/1/2023

5 WARNINGS AND PRECAUTIONS

5.1 Presence of Gastric Malignancy

In adults, symptomatic response to therapy with esomeprazole magnesium does not preclude the presence of gastric malignancy. Consider additional follow-up and diagnostic testing in adult patients who have a suboptimal response or an early symptomatic relapse after completing treatment with a PPI. In older patients, also consider an endoscopy.

5.2 Acute Interstitial Nephritis

Acute interstitial nephritis has been observed in patients taking PPIs including esomeprazole magnesium. Acute interstitial nephritis may occur at any point during PPI therapy and is generally attributed to an idiopathic hypersensitivity reaction. Discontinue esomeprazole magnesium if acute interstitial nephritis develops [see Contraindications (4)].

5.3 Clostridium difficile associated diarrhea

Published observational studies suggest that PPI therapy like esomeprazole magnesium may be associated with an increased risk of Clostridium difficile- associated diarrhea, especially in hospitalized patients. This diagnosis should be considered for diarrhea that does not improve [seeAdverse Reactions (6.2)].

Patients should use the lowest dose and shortest duration of PPI therapy appropriate to the condition being treated.

Clostridium difficile-associated diarrhea (CDAD) has been reported with use of nearly all antibacterial agents. For more information specific to antibacterial agents (clarithromycin and amoxicillin) indicated for use in combination with esomeprazole magnesium, refer to Warnings and Precautions section of the corresponding prescribing information.

5.4 Bone Fracture

Several published observational studies suggest that proton pump inhibitor (PPI) therapy may be associated with an increased risk for osteoporosis- related fractures of the hip, wrist, or spine. The risk of fracture was increased in patients who received high-dose, defined as multiple daily doses, and long-term PPI therapy (a year or longer). Patients should use the lowest dose and shortest duration of PPI therapy appropriate to the condition being treated. Patients at risk for osteoporosis-related fractures should be managed according to established treatment guidelines [seeDosage and Administration **** (2)and Adverse Reactions**** (6.2)].

5.5 Cutaneous and Systemic Lupus Erythematosus

Cutaneous lupus erythematosus (CLE) and systemic lupus erythematosus (SLE) have been reported in patients taking PPIs, including esomeprazole. These events have occurred as both new onset and an exacerbation of existing autoimmune disease. The majority of PPI-induced lupus erythematosus cases were CLE.

The most common form of CLE reported in patients treated with PPIs was subacute CLE (SCLE) and occurred within weeks to years after continuous drug therapy in patients ranging from infants to the elderly. Generally, histological findings were observed without organ involvement.

Systemic lupus erythematosus (SLE) is less commonly reported than CLE in patients receiving PPIs. PPI associated SLE is usually milder than non-drug induced SLE. Onset of SLE typically occurred within days to years after initiating treatment primarily in patients ranging from young adults to the elderly. The majority of patients presented with rash; however, arthralgia and cytopenia were also reported.

Avoid administration of PPIs for longer than medically indicated. If signs or symptoms consistent with CLE or SLE are noted in patients receiving esomeprazole magnesium, discontinue the drug and refer the patient to the appropriate specialist for evaluation. Most patients improve with discontinuation of the PPI alone in 4 to 12 weeks. Serological testing (e.g. ANA) may be positive and elevated serological test results may take longer to resolve than clinical manifestations.

5.6 Interaction with Clopidogrel

Avoid concomitant use of esomeprazole magnesium with clopidogrel. Clopidogrel is a prodrug. Inhibition of platelet aggregation by clopidogrel is entirely due to an active metabolite. The metabolism of clopidogrel to its active metabolite can be impaired by use with concomitant medications, such as esomeprazole, that inhibit CYP2C19 activity. Concomitant use of clopidogrel with 40 mg esomeprazole reduces the pharmacological activity of clopidogrel. When using esomeprazole magnesium consider alternative anti-platelet therapy [seeDrug Interactions (7.3) andClinical Pharmacology (12.3)].

5.7 Cyanocobalamin (Vitamin B-12) Deficiency

Daily treatment with any acid-suppressing medications over a long period of time (e.g., longer than 3 years) may lead to malabsorption of cyanocobalamin (vitamin B-12) caused by hypo-or achlorhydria. Rare reports of cyanocobalamin deficiency occurring with acid-suppressing therapy have been reported in the literature. This diagnosis should be considered if clinical symptoms consistent with cyanocobalamin deficiency are observed.

5.8 Hypomagnesemia

Hypomagnesemia, symptomatic and asymptomatic, has been reported rarely in patients treated with PPIs for at least three months, in most cases after a year of therapy. Serious adverse events include tetany, arrhythmias, and seizures. In most patients, treatment of hypomagnesemia required magnesium replacement and discontinuation of the PPI.

For patients expected to be on prolonged treatment or who take PPIs with medications such as digoxin or drugs that may cause hypomagnesemia (e.g., diuretics), health care professionals may consider monitoring magnesium levels prior to initiation of PPI treatment and periodically [seeAdverse Reactions (6.2)]

5.9 Interaction with St. John’s Wort or Rifampin

Drugs which induce CYP2C19 or CYP3A4 (such as St. John’s Wort or rifampin) can substantially decrease esomeprazole concentrations. [seeDrug Interactions (7.3)] Avoid concomitant use of esomeprazole magnesium with St. John’s Wort, or rifampin.

5.10 Interactions with Diagnostic Investigations for Neuroendocrine Tumors

Serum chromogranin A (CgA) levels increase secondary to drug-induced decreases in gastric acidity. The increased CgA level may cause false positive results in diagnostic investigations for neuroendocrine tumors. Healthcare providers should temporarily stop esomeprazole treatment at least 14 days before assessing CgA levels and consider repeating the test if initial CgA levels are high. If serial tests are performed (e.g. for monitoring), the same commercial laboratory should be used for testing, as reference ranges between tests may vary [seeClinical Pharmacology**** (12.2****)].

5.11 Interaction with Methotrexate

Literature suggests that concomitant use of PPIs with methotrexate (primarily at high dose; see methotrexate prescribing information) may elevate and prolong serum levels of methotrexate and/or its metabolite, possibly leading to methotrexate toxicities. In high-dose methotrexate administration a temporary withdrawal of the PPI may be considered in some patients [seeDrug Interactions (7.7)].

Key Highlight
 Gastric Malignancy:In adults, symptomatic response does not preclude the presence of gastric malignancy. Consider additional follow-up and diagnostic testing. (5.1)
 Acute Interstitial Nephritis: Observedin patients taking PPIs. (5.2)
 Clostridium difficile-Associated Diarrhea: PPI therapy may be associated with increased risk (5.3)
 Bone Fracture: Long-term and multiple daily dose PPI therapy may be associated with an increased risk for osteoporosis-related fractures of the hip, wrist or spine. (5.4)
 Cutaneous and Systemic Lupus Erythematosus: Mostly cutaneous; new onset or exacerbation of existing disease; discontinue esomeprazole magnesium and refer to specialist for evaluation. (5.5)
 Interaction with Clopidogrel: Avoid concomitant use of esomeprazole magnesium. (5.6)
 Cyanocobalamin (Vitamin B-12) Deficiency: Daily long-term use (e.g., longer than 3 years) may lead to malabsorption or a deficiency of cyanocobalamin. (5.7)
 Hypomagnesemia: Reported rarely with prolonged treatment with PPIs. (5.8)
 Interaction with St. John’s Wort or Rifampin: Avoid concomitant use of esomeprazole magnesium. (5.9, 7.3) 
 Interactions with Diagnostic Investigations for Neuroendocrine Tumors: Increased chromogranin A (CgA) levels may interfere with diagnostic investigations for neuroendocrine tumors, temporarily stop esomeprazole magnesium at least 14 days before assessing CgA levels. (5.10, 12.2) 
 Interaction with Methotrexate: Concomitant use with PPIs may elevate and/or prolong serum concentrations of methotrexate and/or its metabolite, possibly leading to toxicity. With high dose methotrexate administration, consider temporary withdrawal of esomeprazole magnesium. (5.11, 7.7) 

ADVERSE REACTIONS SECTION

LOINC: 34084-4Updated: 2/1/2023

6 ADVERSE REACTIONS

The following serious adverse reactions are described below and elsewhere in labeling:

• Acute Interstitial Nephritis [see Warnings and Precautions (5.2)]

• Clostridium difficile-Associated Diarrhea [see Warnings and Precautions (5.3)]

• Bone Fracture [see Warnings and Precautions (5.4)]

• Cutaneous and Systemic Lupus Erythematosus [see Warnings and Precautions (5.5)]

• Cyanocobalamin (Vitamin B-12) Deficiency [see Warnings and Precautions (5.7)]

• Hypomagnesemia [see Warnings and Precautions (5.8)]

6.1 Clinical Trials Experience

Because clinical trials are conducted under widely varying conditions, adverse reaction rates observed in the clinical trials of a drug cannot be directly compared to rates in the clinical trials of another drug and may not reflect the rates observed in practice.

Adults

The safety of esomeprazole magnesium was evaluated in over 15,000 patients (aged 18 to 84 years) in clinical trials worldwide including over 8,500 patients in the United States and over 6,500 patients in Europe and Canada. Over 2,900 patients were treated in long-term studies for up to 6 to 12 months. In general, esomeprazole magnesium was well tolerated in both short and long-term clinical trials.

The safety in the treatment of healing of erosive esophagitis was assessed in four randomized comparative clinical trials, which included 1,240 patients on esomeprazole magnesium 20 mg, 2,434 patients on esomeprazole magnesium 40 mg, and 3,008 patients on omeprazole 20 mg daily. The most frequently occurring adverse reactions (≥1%) in all three groups were headache (5.5, 5, and 3.8, respectively) and diarrhea (no difference among the three groups). Nausea, flatulence, abdominal pain, constipation, and dry mouth occurred at similar rates among patients taking esomeprazole magnesium or omeprazole.

Additional adverse reactions that were reported as possibly or probably related to esomeprazole magnesium with an incidence < 1% are listed below by body system:

Body as a Whole: abdomen enlarged, allergic reaction, asthenia, back pain, chest pain, substernal chest pain, facial edema, peripheral edema, hot flushes, fatigue, fever, flu-like disorder, generalized edema, leg edema, malaise, pain, rigors;

Cardiovascular: flushing, hypertension, tachycardia;

Endocrine: goiter;

Gastrointestinal: bowel irregularity, constipation aggravated, dyspepsia, dysphagia, dysplasia GI, epigastric pain, eructation, esophageal disorder, frequent stools, gastroenteritis, GI hemorrhage, GI symptoms not otherwise specified, hiccup, melena, mouth disorder, pharynx disorder, rectal disorder, serum gastrin increased, tongue disorder, tongue edema, ulcerative stomatitis, vomiting;

Hearing: earache, tinnitus;

Hematologic: anemia, anemia hypochromic, cervical lymphadenopathy, epistaxis, leukocytosis, leukopenia, thrombocytopenia;

Hepatic: bilirubinemia, hepatic function abnormal, SGOT increased, SGPT increased;

Metabolic/Nutritional: glycosuria, hyperuricemia, hyponatremia, increased alkaline phosphatase, thirst, vitamin B12 deficiency, weight increase, weight decrease;

Musculoskeletal: arthralgia, arthritis aggravated, arthropathy, cramps, fibromyalgia syndrome, hernia, polymyalgia rheumatica;

Nervous System/Psychiatric: anorexia, apathy, appetite increased, confusion, depression aggravated, dizziness, hypertonia, nervousness, hypoesthesia, impotence, insomnia, migraine, migraine aggravated, paresthesia, sleep disorder, somnolence, tremor, vertigo, visual field defect;

Reproductive: dysmenorrhea, menstrual disorder, vaginitis;

Respiratory: asthma aggravated, coughing, dyspnea, larynx edema, pharyngitis, rhinitis, sinusitis;

Skin and Appendages: acne, angioedema, dermatitis, pruritus, pruritus ani, rash, rash erythematous, rash maculo-papular, skin inflammation, sweating increased, urticaria;

Special Senses: otitis media, parosmia, taste loss, taste perversion;

Urogenital: abnormal urine, albuminuria, cystitis, dysuria, fungal infection, hematuria, micturition frequency, moniliasis, genital moniliasis, polyuria;

Visual: conjunctivitis, vision abnormal.

The following potentially clinically significant laboratory changes in clinical trials, irrespective of relationship to esomeprazole magnesium, were reported in ≤ 1% of patients: increased creatinine, uric acid, total bilirubin, alkaline phosphatase, ALT, AST, hemoglobin, white blood cell count, platelets, serum gastrin, potassium, sodium, thyroxine and thyroid stimulating hormone [seeClinical Pharmacology (12)]. Decreases were seen in hemoglobin, white blood cell count, platelets, potassium, sodium, and thyroxine.

Endoscopic findings that were reported as adverse reactions include: duodenitis, esophagitis, esophageal stricture, esophageal ulceration, esophageal varices, gastric ulcer, gastritis, hernia, benign polyps or nodules, Barrett’s esophagus, and mucosal discoloration.

The incidence of treatment-related adverse reactions during 6-month maintenance treatment was similar to placebo. There were no differences in types of related adverse reactions seen during maintenance treatment up to 12 months compared to short-term treatment.

Two placebo-controlled studies were conducted in 710 patients for the treatment of symptomatic gastroesophageal reflux disease. The most common adverse reactions that were reported as possibly or probably related to esomeprazole magnesium were diarrhea (4.3%), headache (3.8%), and abdominal pain (3.8%).

Pediatrics

The safety of esomeprazole magnesium was evaluated in 316 pediatric and adolescent patients aged 1 to 17 years in four clinical trials for the treatment of symptomatic GERD [seeClinical Studies (14.2)]. In 109 pediatric patients aged 1 to 11 years, the most frequently reported (at least 1%) treatment-related adverse reactions in these patients were diarrhea (2.8%), headache (1.9%) and somnolence (1.9%). In 149 pediatric patients aged 12 to 17 years the most frequently reported (at least 2%) treatment-related adverse reactions in these patients were headache (8.1%), abdominal pain (2.7%), diarrhea (2%), and nausea (2%).

The safety of esomeprazole magnesium was evaluated in 167 pediatric patients from birth to <1 year of age in three clinical trials [seeClinical Studies (14.3)]. In a study that included 26 pediatric patients aged birth to 1 month there were no treatment related adverse reactions. In a study that included 43 pediatric patients age 1 to 11 months, inclusive the most frequently reported (at least 5%) adverse reactions, irrespective of causality, were irritability and vomiting. In a study that included 98 pediatric patients, age 1 to 11 months, inclusive exposed to esomeprazole for up to 6 weeks (including 39 patients randomized to the withdrawal phase), there were 4 treatment-related adverse reactions: abdominal pain (1%), regurgitation (1%), tachypnea (1%), and increased ALT (1%).

No new safety concerns were identified in pediatric patients.

Combination Treatment with Amoxicillin and Clarithromycin

In clinical trials using combination therapy with esomeprazole magnesium plus amoxicillin and clarithromycin, no additional adverse reactions specific to these drug combinations were observed. Adverse reactions that occurred were limited to those observed when using esomeprazole magnesium, amoxicillin, or clarithromycin alone.

The most frequently reported drug-related adverse reactions for patients who received triple therapy for 10 days were diarrhea (9.2%), taste perversion (6.6%), and abdominal pain (3.7%). No treatment-emergent adverse reactions were observed at higher rates with triple therapy than were observed with esomeprazole magnesium alone.

For more information on adverse reactions with amoxicillin or clarithromycin, refer to their package inserts, Adverse Reactions sections.

In clinical trials using combination therapy with esomeprazole magnesium plus amoxicillin and clarithromycin, no additional increased laboratory abnormalities particular to these drug combinations were observed.

For more information on laboratory changes with amoxicillin or clarithromycin, refer to their package inserts, Adverse Reactions section.

6.2 Postmarketing Experience

The following adverse reactions have been identified during post-approval use of esomeprazole magnesium. Because these reactions are reported voluntarily from a population of uncertain size, it is not always possible to reliably estimate their frequency or establish a causal relationship to drug exposure. These reports are listed below by body system:

Blood and Lymphatic: agranulocytosis, pancytopenia;

Eye: blurred vision;

Gastrointestinal: pancreatitis; stomatitis; microscopic colitis ;

Hepatobiliary: hepatic failure, hepatitis with or without jaundice;

Immune System: anaphylactic reaction/shock; systemic lupus erythematosus;

Infections and Infestations: GI candidiasis; Clostridium difficile-associated diarrhea;

Metabolism and nutritional disorders: hypomagnesemia, with or without hypocalcemia and/or hypokalemia;

Musculoskeletal and Connective Tissue: muscular weakness, myalgia, bone fracture;

Nervous System: hepatic encephalopathy, taste disturbance;

Psychiatric: aggression, agitation, depression, hallucination;

Renal and Urinary: interstitial nephritis;

Reproductive System and Breast: gynecomastia;

Respiratory, Thoracic, and Mediastinal: bronchospasm;

Skin and Subcutaneous Tissue: alopecia, erythema multiforme, hyperhidrosis, photosensitivity, Stevens-Johnson syndrome, toxic epidermal necrolysis (some fatal), cutaneous lupus erythematosus.

Key Highlight

Most common adverse reactions (6.1):

 Adults (≥ 18 years) (incidence ≥1%) are headache, diarrhea, nausea, flatulence, abdominal pain, constipation, and dry mouth 
Pediatric (1 to 17 years) (incidence ≥ 2%) are headache, diarrhea, abdominal pain, nausea, and somnolence 
Pediatric (1 month to less than 1 year) (incidence 1%) are abdominal pain, regurgitation, tachypnea, and increased ALT 

To report SUSPECTED ADVERSE REACTIONS, contact Dr. Reddy’s Laboratories Inc. at 1-888-375-3784 or FDA at 1-800-FDA-1088 or www.fda.gov/medwatch.

DRUG INTERACTIONS SECTION

LOINC: 34073-7Updated: 2/1/2023

7 DRUG INTERACTIONS

7.1 Interference with Antiretroviral Therapy

Concomitant use of atazanavir and nelfinavir with proton pump inhibitors is not recommended. Co-administration of atazanavir with proton pump inhibitors is expected to substantially decrease atazanavir plasma concentrations and may result in a loss of therapeutic effect and the development of drug resistance. Co-administration of saquinavir with proton pump inhibitors is expected to increase saquinavir concentrations, which may increase toxicity and require dose reduction.

Omeprazole, of which esomeprazole is an enantiomer, has been reported to interact with some antiretroviral drugs. The clinical importance and the mechanisms behind these interactions are not always known. Increased gastric pH during omeprazole treatment may change the absorption of the antiretroviral drug. Other possible interaction mechanisms are via CYP2C19.

Reduced concentrations of atazanavir and nelfinavir

For some antiretroviral drugs, such as atazanavir and nelfinavir, decreased serum levels have been reported when given together with omeprazole. Following multiple doses of nelfinavir (1250 mg, twice daily) and omeprazole (40 mg daily), AUC was decreased by 36% and 92%, Cmax by 37% and 89% and Cmin by 39% and 75% respectively for nelfinavir and M8. Following multiple doses of atazanavir (400 mg, daily) and omeprazole (40 mg, daily, 2 hour before atazanavir), AUC was decreased by 94%, Cmax by 96%, and Cmin by 95%. Concomitant administration with omeprazole and drugs such as atazanavir and nelfinavir is therefore not recommended.

Increased concentrations of saquinavir

For other antiretroviral drugs, such as saquinavir, elevated serum levels have been reported, with an increase in AUC by 82%, in Cmax by 75%, and in Cmin by 106%, following multiple dosing of saquinavir/ritonavir (1000/100 mg) twice daily for 15 days with omeprazole 40 mg daily co-administered days 11 to 15. Therefore, clinical and laboratory monitoring for saquinavir toxicity is recommended during concurrent use with esomeprazole magnesium. Dose reduction of saquinavir should be considered from the safety perspective for individual patients.

There are also some antiretroviral drugs of which unchanged serum levels have been reported when given with omeprazole.

7.2 Drugs for Which Gastric pH Can Affect Bioavailability

Due to its effects on gastric acid secretion, esomeprazole can reduce the absorption of drugs where gastric pH is an important determinant of their bioavailability. Like with other drugs that decrease the intragastric acidity, the absorption of drugs such as ketoconazole, atazanavir, iron salts, erlotinib, and mycophenolate mofetil (MMF) can decrease, while the absorption of drugs such as digoxin can increase during treatment with esomeprazole.

Esomeprazole is an enantiomer of omeprazole. Concomitant treatment with omeprazole (20 mg daily) and digoxin in healthy subjects increased the bioavailability of digoxin by 10% (30% in two subjects). Co-administration of digoxin with esomeprazole is expected to increase the systemic exposure of digoxin. Therefore, patients may need to be monitored when digoxin is taken concomitantly with esomeprazole.

Co-administration of omeprazole in healthy subjects and in transplant patients receiving MMF has been reported to reduce the exposure to the active metabolite, mycophenolic acid (MPA), possibly due to a decrease in MMF solubility at an increased gastric pH. The clinical relevance of reduced MPA exposure on organ rejection has not been established in transplant patients receiving esomeprazole and MMF. Use esomeprazole with caution in transplant patients receiving MMF [see Clinical Pharmacology (12.3)].

7.3 Effects on Hepatic Metabolism/Cytochrome P-450 Pathways

Esomeprazole is extensively metabolized in the liver by CYP2C19 and CYP3A4. In vitro and in vivo studies have shown that esomeprazole is not likely to inhibit CYPs 1A2, 2A6, 2C9, 2D6, 2E1, and 3A4. No clinically relevant interactions with drugs metabolized by these CYP enzymes would be expected. Drug interaction studies have shown that esomeprazole does not have any clinically significant interactions with phenytoin, warfarin, quinidine, clarithromycin, or amoxicillin.

However, postmarketing reports of changes in prothrombin measures have been received among patients on concomitant warfarin and esomeprazole therapy. Increases in INR and prothrombin time may lead to abnormal bleeding and even death. Patients treated with proton pump inhibitors and warfarin concomitantly may need to be monitored for increases in INR and prothrombin time.

Esomeprazole may potentially interfere with CYP2C19, the major esomeprazole metabolizing enzyme. Coadministration of esomeprazole 30 mg and diazepam, a CYP2C19 substrate, resulted in a 45% decrease in clearance of diazepam.

Clopidogrel

Clopidogrel is metabolized to its active metabolite in part by CYP2C19. Concomitant use of esomeprazole 40 mg results in reduced plasma concentrations of the active metabolite of clopidogrel and a reduction in platelet inhibition. Avoid concomitant administration of esomeprazole magnesium with clopidogrel. When using esomeprazole magnesium, consider use of alternative anti-platelet therapy [seeClinical Pharmacology (12.3)].

Omeprazole acts as an inhibitor of CYP2C19. Omeprazole, given in doses of 40 mg daily for one week to 20 healthy subjects in cross-over study, increased Cmax and AUC of cilostazol by 18% and 26% respectively. Cmax and AUC of one of its active metabolites, 3,4-dihydro-cilostazol, which has 4 to 7 times the activity of cilostazol, were increased by 29% and 69% respectively. Co- administration of cilostazol with esomeprazole is expected to increase concentrations of cilostazol and its above mentioned active metabolite. Therefore a dose reduction of cilostazol from 100 mg twice daily to 50 mg twice daily should be considered.

Concomitant administration of esomeprazole and a combined inhibitor of CYP2C19 and CYP3A4, such as voriconazole, may result in more than doubling of the esomeprazole exposure. Dose adjustment of esomeprazole is not normally required. However, in patients with Zollinger-Ellison’s Syndrome, who may require higher doses up to 240 mg/day, dose adjustment may be considered.

Drugs known to induce CYP2C19 or CYP3A4 or both (such as rifampin) may lead to decreased esomeprazole serum levels. Omeprazole, of which esomeprazole is an enantiomer, has been reported to interact with St. John’s Wort an inducer of CYP3A4. In a cross-over study in 12 healthy male subjects, St John’s Wort (300 mg three times daily for 14 days) significantly decreased the systemic exposure of omeprazole in CYP2C19 poor metabolisers (Cmax and AUC decreased by 37.5% and 37.9%, respectively) and extensive metabolisers (Cmax and AUC decreased by 49.6 % and 43.9%, respectively). Avoid concomitant use of St. John’s Wort or rifampin with esomeprazole magnesium.

7.4 Interactions with Investigations of Neuroendocrine Tumors

Drug-induced decrease in gastric acidity results in enterochromaffin-like cell hyperplasia and increased Chromogranin A levels which may interfere with investigations for neuroendocrine tumors [seeWarnings and Precautions (5.10) andClinical Pharmacology (12.2)].

7.5 Tacrolimus

Concomitant administration of esomeprazole and tacrolimus may increase the serum levels of tacrolimus.

7.6 Combination Therapy with Clarithromycin

Co-administration of esomeprazole, clarithromycin, and amoxicillin has resulted in increases in the plasma levels of esomeprazole and 14-hydroxyclarithromycin [seeClinical Pharmacology (12.4)].

Concomitant administration of clarithromycin with other drugs can lead to serious adverse reactions due to drug interactions [seeWarnings and Precautions in prescribing information for clarithromycin]. Because of these drug interactions, clarithromycin is contraindicated for co-administration with certain drugs [seeContraindications in prescribing information for clarithromycin].

7.7 Methotrexate

Case reports, published population pharmacokinetic studies, and retrospective analyses suggest that concomitant administration of PPIs and methotrexate (primarily at high dose; see methotrexate prescribing information) may elevate and prolong serum levels of methotrexate and/or its metabolite hydroxymethotrexate. However, no formal drug interaction studies of methotrexate with PPIs have been conducted [seeWarnings and Precautions (5.11)].

Key Highlight
May affect plasma levels of antiretroviral drugs – use with atazanavir and nelfinavir is not recommended; if saquinavir is used with esomeprazole magnesium, monitor for toxicity and consider saquinavir dose reduction (7.1) 
May interfere with drugs for which gastric pH affects bioavailability (e.g., ketoconazole, iron salts, erlotinib, digoxin and mycophenolate mofetil). Patients treated with esomeprazole magnesium and digoxin may need to be monitored for digoxin toxicity. (7.2) 
Combined inhibitor of CYP 2C19 and 3A4 may raise esomeprazole levels (7.3)
Clopidogrel: Esomeprazole magnesium decreases exposure to the active metabolite of clopidogrel. (7.3) 
May increase systemic exposure of cilostazol and an active metabolite. Consider dose reduction (7.3) 
Tacrolimus: Esomeprazole magnesium may increase serum levels of tacrolimus (7.5) 
Methotrexate: Esomeprazole magnesium may increase serum levels of methotrexate (7.7) 

NONCLINICAL TOXICOLOGY SECTION

LOINC: 43680-8Updated: 2/1/2023

13 NONCLINICAL TOXICOLOGY

13.1 Carcinogenesis, Mutagenesis, Impairment Of Fertility

The carcinogenic potential of esomeprazole magnesium was assessed using studies of omeprazole, of which esomeprazole is an enantiomer. In two 24-month oral carcinogenicity studies in rats, omeprazole at daily doses of 1.7, 3.4, 13.8, 44, and 140.8 mg/kg/day (about 0.4 to 34 times the human dose of 40 mg/day expressed on a body surface area basis) produced gastric ECL cell carcinoids in a dose-related manner in both male and female rats; the incidence of this effect was markedly higher in female rats, which had higher blood levels of omeprazole. Gastric carcinoids seldom occur in the untreated rat. In addition, ECL cell hyperplasia was present in all treated groups of both sexes. In one of these studies, female rats were treated with 13.8 mg omeprazole/kg/day (about 3.4 times the human dose of 40 mg/day on a body surface area basis) for 1 year, then followed for an additional year without the drug. No carcinoids were seen in these rats. An increased incidence of treatment-related ECL cell hyperplasia was observed at the end of 1 year (94% treated vs. 10% controls). By the second year the difference between treated and control rats was much smaller (46% vs. 26%) but still showed more hyperplasia in the treated group. Gastric adenocarcinoma was seen in one rat (2%). No similar tumor was seen in male or female rats treated for 2 years. For this strain of rat no similar tumor has been noted historically, but a finding involving only one tumor is difficult to interpret. A 78-week mouse carcinogenicity study of omeprazole did not show increased tumor occurrence, but the study was not conclusive.

Esomeprazole was negative in the Ames mutation test, in the in vivo rat bone marrow cell chromosome aberration test, and the in vivo mouse micronucleus test. Esomeprazole, however, was positive in the in vitro human lymphocyte chromosome aberration test. Omeprazole was positive in the in vitro human lymphocyte chromosome aberration test, the in vivo mouse bone marrow cell chromosome aberration test, and the in vivo mouse micronucleus test.

The potential effects of esomeprazole on fertility and reproductive performance were assessed using omeprazole studies. Omeprazole at oral doses up to 138 mg/kg/day in rats (about 34 times the human dose of 40 mg/day on a body surface area basis) was found to have no effect on reproductive performance of parental animals.

13.2 Animal Pharmacology and/or Toxicology

Reproduction Studies

Reproduction studies have been performed in rats at oral doses up to 280 mg/kg/day (about 68 times an oral human dose of 40 mg on a body surface area basis) and in rabbits at oral doses up to 86 mg/kg/day (about 42 times an oral human dose of 40 mg on a body surface area basis) and have revealed no evidence of impaired fertility or harm to the fetus due to esomeprazole [ see Use in Specific Populations** (8.1)**].

Juvenile Animal Study

A 28-day toxicity study with a 14-day recovery phase was conducted in juvenile rats with esomeprazole magnesium at doses of 70 to 280 mg /kg/day (about 17 to 68 times a daily oral human dose of 40 mg on a body surface area basis). An increase in the number of deaths at the high dose of 280 mg/kg/day was observed when juvenile rats were administered esomeprazole magnesium from postnatal day 7 through postnatal day 35. In addition, doses equal to or greater than 140 mg/kg/day (about 34 times a daily oral human dose of 40 mg on a body surface area basis), produced treatment-related decreases in body weight (approximately 14%) and body weight gain, decreases in femur weight and femur length, and affected overall growth. Comparable findings described above have also been observed in this study with another esomeprazole salt, esomeprazole strontium, at equimolar doses of esomeprazole.

INFORMATION FOR PATIENTS SECTION

LOINC: 34076-0Updated: 2/1/2023

17 PATIENT COUNSELING INFORMATION

Advise the patient to read the FDA-approved patient labeling (Medication Guide).

Adverse Reactions

Advise patients to report to their healthcare provider if they experience any signs or symptoms consistent with:

• Hypersensitivity Reactions [seeContraindications****(4)]

• Acute Interstitial Nephritis [seeWarnings and Precautions****(5.2)]

• Clostridium difficile-Associated Diarrhea [seeWarnings and Precautions ****(5.3)]

• Bone Fracture [seeWarnings and Precaution****(5.4)]

• Cutaneous and Systemic Lupus Erythematosus [seeWarnings and Precautions ****(5.5)]

• Cyanocobalamin (Vitamin B-12) Deficiency [seeWarnings and Precautions ****(5.7)]

• Hypomagnesemia [seeWarnings and Precautions****(5.8)]

Drug Interactions

• Advise patients to let you know if they are taking, or begin taking, other medications, because esomeprazole magnesium can interfere with antiretroviral drugs and drugs that are affected by gastric pH changes [seeDrug Interactions****(7.1)].

Administration

• Let patients know that antacids may be used while taking esomeprazole magnesium delayed-release capsules.

• Advise patients to take esomeprazole magnesium delayed-release capsules at least one hour before a meal.

• For patients who are prescribed esomeprazole magnesium delayed-release capsules, advise them not to chew or crush the capsules.

• Advise patients that, if they open esomeprazole magnesium delayed-release capsules to mix the granules with food, the granules should only be mixed with applesauce. Use with other foods has not been evaluated and is not recommended.

• For patients who are advised to open the esomeprazole magnesium delayed- release capsules before taking them, instruct them in the proper technique for administration [seeDosage and Administration****(2****)] and tell them to follow the dosing instructions in the PATIENT INFORMATION insert included in the package. Instruct patients to rinse the syringe with water after each use.

MedPath

Empowering clinical research with data-driven insights and AI-powered tools.

© 2025 MedPath, Inc. All rights reserved.

Esomeprazole Magnesium - FDA Drug Approval Details