Evaluation of Kidney Function by Multi-modal Magnetic Resonance Imaging and Spectroscopy
- Conditions
- Urinary CalculiKidney Transplantation
- Interventions
- Radiation: diffusion MRIRadiation: BOLD MRIOther: Clinical Outcome
- Registration Number
- NCT00575432
- Lead Sponsor
- Insel Gruppe AG, University Hospital Bern
- Brief Summary
Multimodal functional magnetic resonance (MR) methods, including MR diffusion, Blood-Oxygenation Level Dependent (BOLD) imaging and MR spectroscopy may provide complementary information about the functional status of a kidney. The researchers hypothesize that these non-invasive methods correlate with histology as "gold standard" and compete favorably with conventional in part invasive evaluation methods, and thus provide specific and early detection of kidney diseases of various etiologies, drug toxicity, or renal allograft dysfunction.
- Detailed Description
Early and specific detection of dysfunction in kidney diseases and differential diagnosis of potential complications in the renal allograft are fundamental to initiate appropriate treatment. In addition, determination of renal function may reveal physiological mechanisms that may prove useful for future therapeutic procedures. Currently, used methods to access renal function like ultrasound, radionuclide imaging, and laboratory methods have several disadvantages, as they are nonspecific, require radioactive contrast agents or are limited in spatial information. Therefore, alternative non-invasive methods to detect early morphological and functional changes are required. Recently, a variety of very promising advanced magnetic resonance imaging (MRI) methods have evolved to obtain functional information of different organs. These methods include MR angiography, diffusion, perfusion and Blood-Oxygenation Level Dependent (BOLD) imaging. In addition to MRI, MR spectroscopy (MRS) provides renal functional information. In abdominal organs like the kidney, respiratory, and cardiac motion and susceptibility artifacts have limited the use of these functional MR methods for clinical applications. However, this may be overcome with the advent of greatly enhanced hardware, allowing very fast imaging times. Besides these in vivo techniques, novel processing algorithms for complex ex vivo MR spectra of body fluids have emerged recently. These methods, labeled "Metabonomics", access renal function by obtaining metabolic profiles that are indicative for renal dysfunction.
The researchers hypothesize that these non-invasive methods correlate with histology as "gold standard" and compete favorably with conventional in part invasive evaluation methods, and thus provide specific and early detection of kidney diseases of various etiologies, drug toxicity or renal allograft dysfunction.
Recruitment & Eligibility
- Status
- ACTIVE_NOT_RECRUITING
- Sex
- All
- Target Recruitment
- 200
- Minimum age 16 years
- Male or female
- Signed consensus report to the study
- History of allergy to contrast media
- Pregnancy
- Contraindication for MR examination: Content of electronic devices in the body of the subject (i.e. pacemaker of heart, implanted insulin pump, nerve stimulator, or similar medical devices), content of metallic foreign bodies or metal-pieces (without amalgam filling), claustrophobia
- Back or other problems that don't allow motionless lying for 75 minutes
- Missing signed consensus report to the study
Study & Design
- Study Type
- OBSERVATIONAL
- Study Design
- Not specified
- Arm && Interventions
Group Intervention Description 1 diffusion MRI - 1 BOLD MRI - 1 Clinical Outcome -
- Primary Outcome Measures
Name Time Method Correlation of functional MR parameters with histology results as "gold standard" or with final clinical outcome 6 months
- Secondary Outcome Measures
Name Time Method Correlation with clinical results, laboratory results (e.g. GFR, serum-creatinine levels), results from other imaging procedures, correlation within MR parameters (e.g. in vivo metabolites vs. in vitro (from urine) metabolites, oxygenation vs. diffusion) 6 months
Trial Locations
- Locations (1)
Department of Diagnostic and Interventional Neuroradiology
🇨ðŸ‡Bern, Switzerland