TMS-based Assessment of Mental Training Effects on Motor Learning in Healthy Participants
- Conditions
- Motor Learning
- Registration Number
- NCT04784832
- Lead Sponsor
- Institut National de la Santé Et de la Recherche Médicale, France
- Brief Summary
The general purpose of this research project is to analyze the specific role of motor imagery on motor learning, assessed through corticospinal excitability measurements and behavioral data collection. This project is based on four sequences. For Sequence 1, the main objective is to examine the effect of mental training on movement speed and accuracy in a manual motor sequence task, as well as the influence of sensory feedback in immediate post-test (i.e., execution of a similar, but not identical, manual motor sequence, other manual tasks) on performance in delayed post-test. The secondary objective will be to examine corticospinal changes (i.e., amplitude of motor evoked potentials) induced by mental training, by measuring the amplitude of motor evoked potentials before and after mental training. For Sequence 2, the main objective is to examine the impact of a motor disturbance induced by a robotic arm at different intervals during the motor imagery process. The secondary objective will be to examine the corticospinal changes (i.e. amplitude of evoked motor potentials) induced by mental training as a function of the applied perturbations, before and after perturbation. For Sequence 3, the main objective will be to examine the influence of neuroplasticity on the quality of mental training. More specifically, the investigators will study the links between brain plasticity and motor learning through mental training. The secondary objective will be to examine the corticospinal changes (i.e. amplitude of evoked motor potentials) induced by mental training at different levels of the neuromuscular system (cortical, cervicomedullar, peripheral) after a training period. For Sequence 4, the main objective will be to examine the effect of short-term arm-immobilization of on the retention of motor learning induced by mental training. The secondary objective will be to examine the corticospinal changes (i.e., amplitude of motor evoked potentials) induced by of short-term arm-immobilization, or by transcranial direct current stimulation (tDCS), on motor learning. The results of this fundamental research project will allow a better understanding of neurophysiological and behavioral mechanisms that underlie motor learning through motor imagery. The results will allow to efficiently consider inter-individual specificities and will thus open up to clinical research perspectives, towards the establishment of adapted motor rehabilitation protocols.
- Detailed Description
Not available
Recruitment & Eligibility
- Status
- RECRUITING
- Sex
- All
- Target Recruitment
- 556
- Male or female between 18 and 60 years old
- Having given written informed consent
- Affiliated to a social security scheme
- History of psychiatric illness (declarative)
- Person under guardianship, curatorship, safeguard of justice
- Neurological problem that could bias the results of the study (declarative)
- Personal or family history of epilepsy
- Person deprived of liberty by judicial or administrative decision
- Person hospitalized without consent and not subject to legal protection, and person admitted to a health or social institution for purposes other than that of the research
- Person subject to an exclusion period for another research
- Pregnant women or women of childbearing age not using known contraception
- Breastfeeding women
- Person on medication that could influence neurophysiological measures (neuroleptics, anxiolytics, antidepressants)
- Person carrying :
- pacemaker or other device that could interfere with the magnetic field
- Implants (mechanical or electronic: cochlear implants, neural or cardiac pacemakers, infusion pumps, magnetic aneurysm clips, etc.)
- Metallic foreign bodies in the eye or nervous system
- Metallic objects (tattoos, piercings, etc.)
Study & Design
- Study Type
- INTERVENTIONAL
- Study Design
- FACTORIAL
- Primary Outcome Measures
Name Time Method Evolution of movement accuracy - Sequence 1 Each day in Sequence 1 (Sequence 1 is 11 days) The accuracy of performed movement sequences (i.e., the correspondence between the performed finger motor sequences and the requested finger motor sequence).
Evolution of maximal deviation - Sequence 2 Each day in Sequence 2 (Sequence 1 is 10 days) The maximal perpendicular distance between the position of the hand and the straight line joining the starting target and the final target
Evolution of movement speed - Sequence 1 Each day in Sequence 1 (Sequence 1 is 11 days) The duration of performed movement sequences
Evolution of trajectory error - Sequence 2 Each day in Sequence 2 (Sequence 1 is 10 days) The area under the curve of hand's trajectory according to the straight line joining the starting target and the final target.
Evolution of final error - Sequence 2 Each day in Sequence 2 (Sequence 1 is 10 days) The distance between the final position of the hand and the position of the final target.
Evolution of movement speed - Sequence 3 Each day from day 2 to day 11 of Sequence 3 (Sequence 3 is 11 days) The duration of performed movement sequences
Evolution of movement accuracy - Sequence 3 Each day from day 2 to day 11 of Sequence 3 (Sequence 3 is 11 days) The accuracy of performed movement sequences (i.e., the correspondence between the performed finger motor sequences and the requested finger motor sequence).
Evolution of movement speed - Sequence 4 Each day in Sequence 4 (Sequence 4 is 6 days) The duration of performed movement sequences
Evolution of movement accuracy - Sequence 4 Each day in Sequence 4 (Sequence 4 is 6 days) The accuracy of performed movement sequences (i.e., the correspondence between the performed finger motor sequences and the requested finger motor sequence).
- Secondary Outcome Measures
Name Time Method Evolution of motor evoked potentials amplitude - Sequence 1 Day 1, 5, 6, 10 and 11 in Sequence 1 (Sequence 1 is 11 days). Peak-to-peak amplitude of motor evoked potentials
Evolution of motor evoked potentials amplitude - Sequence 4 Days 1, 5, and 6 in Sequence 4 (Sequence 4 is 6 days) Peak-to-peak amplitude of motor evoked potentials
Evolution of motor evoked potentials amplitude - Sequence 3 Day 1, 5, 6, 10 and 11 in Sequence 3 (Sequence 1 is 11 days) Peak-to-peak amplitude of motor evoked potentials
Evolution of motor evoked potentials amplitude - Sequence 2 Each day in Sequence 2 (Sequence 2 is 10 days) Peak-to-peak amplitude of motor evoked potentials
Related Research Topics
Explore scientific publications, clinical data analysis, treatment approaches, and expert-compiled information related to the mechanisms and outcomes of this trial. Click any topic for comprehensive research insights.
Trial Locations
- Locations (1)
INSERM - U1093 Cognition, Action, and Sensorimotor Plasticity
🇫🇷Dijon, France
INSERM - U1093 Cognition, Action, and Sensorimotor Plasticity🇫🇷Dijon, FranceFlorent Lebon, PhDContact+33 3 80 39 67 49Florent.Lebon@u-bourgogne.fr