MedPath

Impact of Breathing Maneuvers on the Oxygenation Supply of the Heart Assessed With MRI in Patients With Coronary Artery Disease

Not Applicable
Completed
Conditions
Coronary Artery Disease
Interventions
Other: Hyperventilation Breath-hold (HVBH)
Other: HVBH with Oxygen
Registration Number
NCT02233634
Lead Sponsor
Insel Gruppe AG, University Hospital Bern
Brief Summary

Patients with an impaired blood supply of the heart routinely receive oxygen in order to improve or preserve the oxygen supply of the heart muscle in acute cardiac care. In recent studies a new innovative MRI-technique that can detect changes in oxygen supply of the heart was able to show that the administration of oxygen or fast breathing can decrease the blood supply of the arteries supplying the heart muscle with oxygen. Thus, the administration of oxygen may paradoxically impair the oxygen supply of the heart muscle. In this study the investigators want to investigate, whether the administration of exogenous oxygen via a mask alone and in combination with fast breathing leads to a decrease in oxygen supply in regions with already impaired blood supply by a narrowing of a coronary artery of the heart.

Detailed Description

Background

Patients with acute myocardial ischemia receive oxygen as a standard measure of care to maintain or improve the myocardial oxygen supply. In 1975 Neil et al. were able to show that higher oxygen concentration reduces myocardial blood flow. However, since the oxygen concentration in the blood was significantly increased it was/is assumed that the higher oxygen supply outweighs the decrease in perfusion. Oxygenation-Sensitive (OS) Cardiovascular Magnetic Resonance (CMR) is a newer technology that uses the paramagnetic deoxyhemoglobin in the blood as an endogenous contrast. An drop in tissue oxygenation (drop in oxyhemoglobin) results in an increase in deoxyhemoglobin, which results in an drop in SI in OS-images. Vice versa an increase in tissue oxygenation results in an increase in OS-SI. Therefore, OS-CMR can assess myocardial tissue oxygenation changes non-invasively, free of contrast and free of radiation. While other diagnostic modalities only give information on myocardial oxygenation with surrogate parameters that may indicate ischemia OS-CMR gives local functional information of the myocardial oxygen supply. Studies have been performed using OS-CMR for the detection of coronary artery disease. More recently breathing maneuvers that change systemic blood gases have been suggested as a vasoactive stimulus to detect coronary artery disease and measure changes to the myocardial oxygen supply. Guensch et al. were able to show that hypercapnia and the combination of hypercapnia and hypoxia lead to a increase of myocardial oxygenation that can only be explained by an increase blood flow. However, hypocapnia resulted in a decrease in myocardial oxygenation in healthy volunteers. In a porcine model the investigators were able to show that the increase in systemic oxygen supply resulted in a decrease in myocardial blood flow in healthy and swine with an acute coronary artery stenosis, but a decrease in myocardial oxygenation was only observed in the animals with a coronary artery stenosis (Abstract Guensch et al: Administration of exogenous oxygen may worsen myocardial ischemia, ESC 2014, accepted). The impact of hyperoxia as well as hypocapnia and hypercapnia in humans with a chronic coronary artery disease is poorly investigated. As the administration of oxygen is part of the treating guidelines in acute myocardial ischemia and in certain situations (e.g. anesthesia) higher oxygen concentrations are maintained for safety reasons, it is important to further investigate the role of higher oxygen concentrations in coronary artery disease. Further the investigators want to shed light on transient states of hypocapnia and hypercapnia induced by voluntary breathing. Because OS-CMR is a safe diagnostic tool (no radiation, no contrast, no pharmacologic vasodilator required) and can give insight on the oxygenation changes of the heart is it ideal to test the hypothesis. Therefore the investigators want to invite patients with a known coronary stenosis (confirmed by previous coronary angiography) scheduled for a percutaneous coronary intervention (staged PCI) or coronary artery bypass surgery to participate in this study prior to the intervention and compare the MRI results to healthy volunteers. All participants will perform hyperventilation with a consecutive breath-hold as well as inhale oxygen for 3-5 minutes while the breathing maneuver is being repeated. For the patients the results will then be compared to the findings of coronary angiography (QCA, reduction in lumen-diameter of the vessel).

Objective

With this study the investigators want to investigate whether the administration of oxygen, as well as performing breathing maneuvers (hyperventilation, breath-holding) have a negative or positive effect on the oxygenation of myocardium subtended to arteries diseased of coronary artery disease, as opposed to healthy subjects.

Methods

CAD-patients with a known coronary pathology that are scheduled for a PCI or coronary bypass surgery will be recruited for the CMR exam prior to the coronary intervention. A i.v. line will be placed for safety reason. During short breath-holds oxygenation-sensitive baseline images and cardiac function images will be acquired. The subjects will then be asked to hyperventilate for one minute with 20-30 breaths/min. Immediately after a maximal breath-hold will be performed in end-expiration as long as the subject can comfortably bear. During the entire breath-hold oxygenation sensitive images will be recorded. Whenever the subject feels the need to breath, he/she can immediately do so and signal the technician with a call bell. After recovery the subject will breath oxygen 12-15L/min through a mask for 3-5 min after which oxygenation sensitive images as well as function images will be repeated. The hyperventilation-breath-hold will be repeated with oxygen. Healthy volunteers will undergo the same protocol.

Recruitment & Eligibility

Status
COMPLETED
Sex
All
Target Recruitment
36
Inclusion Criteria
  • Patients with known relevant coronary artery stenosis (defined by previous coronary angiography, QCA: reduction in lumen-diameter of the vessel >50%) with a scheduled intervention or operation to treat this stenosis (staged PCI or coronary artery bypass surgery)
  • CMR feasible prior to intervention or surgery
  • Age ≥18 years
  • Written informed consent
  • For healthy participants: Absence of cardiovascular and lung disease, and absence of medication with cardiovascular effects
  • Absence of exclusion criteria

Exclusion Criteria

  • General Contraindication against MRI-Scans: (claustrophobia, ferromagnetic implants, clips, pacemakers, shrapnels, ophthalmic metal deposits)
  • Pregnancy or inconclusive test result
  • Age <18 years
  • Inability to give informed consent
  • Consumption of caffeine, tea, treatment of dipyridamol <12h before the scan
  • Medication with calcium antagonists (ok, if can be paused on the day of the scan)
  • Constant medication with nitrates (ok, if can be paused on the day of the scan)
  • Medication with methyl-xanthines
  • Acute myocardial ischemia/myocardial infarction
  • Previous Coronary Bypass Surgery
  • Pulmonary Disease
  • Enrolment of the investigator, his/her family members, employees and other dependent persons
  • Presence of cardiac or lung disease for healthy volunteers, nicotine consumption within the last 6 months
Exclusion Criteria

Not provided

Study & Design

Study Type
INTERVENTIONAL
Study Design
FACTORIAL
Arm && Interventions
GroupInterventionDescription
CAD PatientsHVBH with OxygenAdministration of Oxygen via a mask, Hyperventilation, Combination of Oxygen administration and Hyperventilation, long breath-holds
Healthy Volunteers (Control Group)Hyperventilation Breath-hold (HVBH)Administration of Oxygen via a mask, Hyperventilation, Combination of Oxygen administration and Hyperventilation, long breath-holds
Healthy Volunteers (Control Group)HVBH with OxygenAdministration of Oxygen via a mask, Hyperventilation, Combination of Oxygen administration and Hyperventilation, long breath-holds
CAD PatientsHyperventilation Breath-hold (HVBH)Administration of Oxygen via a mask, Hyperventilation, Combination of Oxygen administration and Hyperventilation, long breath-holds
Healthy Volunteers (Control Group)OxygenAdministration of Oxygen via a mask, Hyperventilation, Combination of Oxygen administration and Hyperventilation, long breath-holds
CAD PatientsOxygenAdministration of Oxygen via a mask, Hyperventilation, Combination of Oxygen administration and Hyperventilation, long breath-holds
Primary Outcome Measures
NameTimeMethod
Change of signal intensity (SI) in oxygenation-sensitive (OS) Cardiovascular Magnetic Resonance (CMR) during the breathing maneuvers/oxygen administrationDuring CMR scan, expected to be on average approx. 45 minutes
Secondary Outcome Measures
NameTimeMethod
Comparison of OS-SI changes between healthy and post-stenotic myocardium during the breathing-maneuvers/oxygen administration in CAD patientsDuring CMR scan, expected to be on average approx. 45 minutes
Comparison of OS-SI changes between healthy volunteers and and CAD patients during the breathing-maneuvers/oxygen administrationDuring CMR scan, expected to be on average approx. 45 minutes
Comparison between OS-SI changes during the breathing maneuvers/oxygen administration and results in quantitative coronary angiography in CAD patients (reduction of lumen diameter)During CMR scan, expected to be on average approx. 45 minutes, and the subsequent coronary angiography

Trial Locations

Locations (1)

Bern University Hospital

🇨🇭

Bern, Switzerland

© Copyright 2025. All Rights Reserved by MedPath