MedPath

Effect of Dexmedetomidine on Brain Homeostasis and Neurocognitive Outcome

Phase 4
Completed
Conditions
Brain Tumor
Metabolic Disturbance
Inflammatory Response
Oxygen Deficiency
Interventions
Other: Normal saline
Drug: Dexmedetomidine
Registration Number
NCT04266665
Lead Sponsor
Georgia Tsaousi
Brief Summary

Brain tumor surgery is commonly associated with different degrees of preoperative intracranial hypertension and surrounding tumor edema, elicited by tumor underlying pathophysiology. During craniotomy for brain tumor resection maintenance of hemodynamic stability and intracranial homoeostasis is of paramount importance. Disordered hemodynamics or adverse stress may activate the immune inflammation or neuroendocrine responses and lead to a surge of inflammatory mediators and stress hormones, which are implicated in secondary brain insults.

Adverse physiological responses caused by intraoperative disordered hemodynamics or surgery-related damage, may lead to some secondary brain injury (such as cerebral edema or cerebral hemorrhage), aggravating damage to brain tissue and affecting the recovery from anesthesia, cognition and prognosis in patients.

Prevention of secondary brain injury is a key-endpoint to improve clinical outcomes in glioma patients undergoing craniotomy.

Alpha2-adrenoceptor agonists have been widely used for sedation, analgesia and anti-sympathetic actions for many years, but the definite evidence of their potential use as neuroprotectants has so far been confined to animal studies, yet the findings are inconsistent.

Dexmedetomidine (DEX) has been demonstrated to be a new type a2 adrenergic receptor (a2-AR) agonist, which can selectively bind with the a1 and a2 adrenergic receptor, and playing a dual role by restraining the activity of sympathetic nervous and stimulating the vagus nerve. Dexmedetomidine (DEX) also plays an important role in in inhibiting inflammatory and neuroendocrine responses. Animal experiments showed that the right must have a dexmedetomidine neuro-protective effect. However, the brain-protective effect of dexmedetomidine in anesthesia of craniotomy resection of glioma has not been reported.

Thus, the aim of this study was to explore the effect of dexmedetomidine on perioperative brain protection, as well as cerebral oxygenation and metabolic status aiming to provide a basis for clinical rational drug use in patients undergoing craniotomy resection of glioma.

Detailed Description

Each participant will receive standard monitoring (ECG, SpO2, SBP, BIS, urine output, temperature). More detailed hemodynamic monitoring will be obtained by Edwards Lifesciences ClearSight system (CO, CI, SV, SVI, SVV, SVR, SVRI).

TCI Propofol and Remifentanil will be the agents of choice for induction and maintenance in anesthesia and cisatracurium will be used for neuromuscular blockade for intubation.

Protective mechanical ventilation will be chosen (7ml/kg IBW) with a respiratory rate to obtain a PaCO2 of 35-40 mmHg. PEEP will be changed for the best PaO2/FiO2 ratio and FiO2 of choice will be 0.5.

The radial artery catheterization will be applied for direct blood pressure measurement and arterial blood gas sampling (pH, PaO2, PaCO2, HCO3, BE, osmolality, lactic acid, Hb, glucose, Na and K will be measured).

The jugular bulb ipsilateral to the craniotomy site will be catheterized for receiving blood samples for blood gas analysis. The following oxygenation and metabolic parameters / derivates will be measured or calculated: SjvO2, pH, PjvO2, PjvCO2, HCO3, BE, Osmolality, Lactic acid jv, Hb, Glucose, Na, K, AjvDO2, AjvCO2, O2ERbr, eRQbr, AjvDL, and LOI.

Dexmedetomidine or normal saline (placebo) administration will start 10 minutes after anesthesia induction and maintained throughout the surgical procedure.

Phases

* T0: 5 minutes before administration of either DEX or placebo

* T15: 10 minutes after administration of either DEX or placebo

* T30: 30 minutes after administration of either DEX or placebo

* T60: 60 minutes after administration of either DEX or placebo

* T120: 120 minutes after administration of either DEX or placebo

* T240: 240 minutes after administration of either DEX or placebo

* End of surgical procedure Blood samples for measuring S-100b, NSE, cortisol, TNF-a and IL-6 will be obtained at phases T0, end of surgery and 24 hours after administration of either DEX or placebo.

Neurocognitive testing will be performed before surgery, 1 week and 1 month later using Karnofsky Performance Status (KFS), Mini Mental State Exam (MMSE), Μontreal Cognitive Assessment (MoCA) and Addenbrooke's Cognitive Exam (ACE III).

Intraoperative consumption of propofol and remifentanil will also be recorded

Recruitment & Eligibility

Status
COMPLETED
Sex
All
Target Recruitment
54
Inclusion Criteria
  • ASA-PS 1-3 (American Society of Anesthesiologists Physical Status classification)
  • Scheduled for elective or semi-elective craniotomy for brain tumor resection
  • Signed informed consent
Read More
Exclusion Criteria
  • History of craniotomy at the same site
  • Morbid obesity
  • Delirious person before surgery
  • Preoperative heart rate (HR) <45 beats/min or second or third degree AV block
  • Treatment with a-methyldopa, clonidine or other a2-adrenergic agonist
  • Pregnancy
  • Liver or renal failure
Read More

Study & Design

Study Type
INTERVENTIONAL
Study Design
PARALLEL
Arm && Interventions
GroupInterventionDescription
Normal salineNormal salineNormal saline (NaCl 0.9%) administration will start 10 minutes after anesthesia induction and maintained throughout the surgical procedure.
DexmedetomidineDexmedetomidineDexmedetomidine 2 μg/ml will be given as bolus 1mg/kg for 10 minutes with a maintenance dose of 0.8μg/kg/h until surgery completion
Primary Outcome Measures
NameTimeMethod
Changes in NSEEnd of surgical procedure and 24 hours postoperatively

Alterations in NSE (ng/ml) after intravenous infusion of equivalent doses of dexmedetomidine or placebo (normal saline)

Changes in S-100b proteinEnd of surgical procedure and 24 hours postoperatively

Alterations in S-100b (μg/L) after intravenous infusion of equivalent doses of dexmedetomidine or placebo (normal saline)

Secondary Outcome Measures
NameTimeMethod
Changes in Addenbrooke's Cognitive Exam (ACE III)1 week and 1 month after the end of surgical procedure

Alterations in Addenbrooke's Cognitive Exam (ACE III) after intravenous infusion of equivalent doses of dexmedetomidine or placebo (normal saline)

Changes in Mini-Mental State Exam (MMSE)1 week and 1 month after the end of surgical procedure

Alterations in Mini-Mental State Exam (MMSE) after intravenous infusion of equivalent doses of dexmedetomidine or placebo (normal saline)

Changes in serum TNF-aEnd of surgical procedure and 24 hours postoperatively

Alterations in serum TNF-a (pg/ml) levels after intravenous infusion of equivalent doses of dexmedetomidine or placebo (normal saline)

Changes in Μontreal Cognitive Assessment (MoCA)1 week and 1 month after the end of surgical procedure

Alterations in Μontreal Cognitive Assessment (MoCA) after intravenous infusion of equivalent doses of dexmedetomidine or placebo (normal saline)

Changes in serum cortisolEnd of surgical procedure and 24 hours postoperatively

Alterations in serum cortisol (μg/dl) levels after intravenous infusion of equivalent doses of dexmedetomidine or placebo (normal saline)

Changes in serum IL-6End of surgical procedure and 24 hours postoperatively

Alterations in serum IL-6 (pg/ml) levels after intravenous infusion of equivalent doses of dexmedetomidine or placebo (normal saline)

Trial Locations

Locations (1)

AHEPA University Hospital

🇬🇷

Thessaloniki, Greece

© Copyright 2025. All Rights Reserved by MedPath