MedPath

Magnetic Resonance Spectroscopy Studies of Cardiac Muscle Metabolism

Recruiting
Conditions
Heart Failure, Congestive
Registration Number
NCT00181259
Lead Sponsor
Johns Hopkins University
Brief Summary

The metabolism of the heart provides the chemical energy needed to fuel ongoing normal heart contraction. Magnetic resonance spectroscopy is a technique used in a MRI scanner that can be used to measure and study heart metabolism directly but without blood sampling or obtaining tissue biopsies. One of the hypotheses this study aims to investigate is whether energy metabolism is reduced in heart failure and whether that contributes to the poor heart function.

Detailed Description

This study uses magnetic resonance (MR) spectroscopy to study heart metabolism and function in normal subjects and patients with left ventricular hypertrophy, dilated cardiomyopathy, and those with coronary artery disease.

Recruitment & Eligibility

Status
RECRUITING
Sex
All
Target Recruitment
500
Inclusion Criteria
  • age > 18 years
  • Healthy subjects: no history of heart disease
  • Dilated cardiomyopathy: history of heart failure, ejection fraction (EF) <40%
  • Left ventricular hypertrophy: wall thickness >1.2cm
  • Coronary artery disease: >50% coronary lesion or positive stress test
Exclusion Criteria
  • contraindication to MRI

Study & Design

Study Type
OBSERVATIONAL
Study Design
Not specified
Primary Outcome Measures
NameTimeMethod
Phosphocreatine/adenosine triphosphate (PCr/ATP) and creatine kinase (CK) fluxAt time of magnetic resonance spectroscopy (MRS)

Can non-invasive magnetic resonance imaging and spectroscopy techniques be developed, validated, and implemented on clinical MR scanners in order to address the questions of a.) the extent to which myocardial high-energy phosphate (HEP), creatine (Cr), or sodium concentrations change in response to and after transient ischemia or chronic ischemic injury, b.) the extent to which myocardial high-energy phosphates, creatine, or sodium concentrations as well as HEP flux are altered in cardiomyopathic patients with and without/ congestive heart failure, c.) can spatial differences in cardiac metabolites (HEP, Cr) or ions (Na) induced by ischemic injury be identified with novel, non-invasive imaging techniques?

Secondary Outcome Measures
NameTimeMethod
[Cr] or total creatine (CR), or CR/water ratioAt time of MRS

Can non-invasive magnetic resonance imaging and spectroscopy techniques be developed, validated, and implemented on clinical MR scanners in order to address the questions of a.) the extent to which myocardial high-energy phosphate (HEP), creatine (Cr), or sodium concentrations change in response to and after transient ischemia or chronic ischemic injury, b.) the extent to which myocardial high-energy phosphates, creatine, or sodium concentrations as well as HEP flux are altered in cardiomyopathic patients with and without/ congestive heart failure, c.) can spatial differences in cardiac metabolites (HEP, Cr) or ions (Na) induced by ischemic injury be identified with novel, non-invasive imaging techniques?

Phosphocreatine (PCr)At time of MRS

Can non-invasive magnetic resonance imaging and spectroscopy techniques be developed, validated, and implemented on clinical MR scanners in order to address the questions of a.) the extent to which myocardial high-energy phosphate (HEP), creatine (Cr), or sodium concentrations change in response to and after transient ischemia or chronic ischemic injury, b.) the extent to which myocardial high-energy phosphates, creatine, or sodium concentrations as well as HEP flux are altered in cardiomyopathic patients with and without/ congestive heart failure, c.) can spatial differences in cardiac metabolites (HEP, Cr) or ions (Na) induced by ischemic injury be identified with novel, non-invasive imaging techniques?

ATPAt time of MRS

Can non-invasive magnetic resonance imaging and spectroscopy techniques be developed, validated, and implemented on clinical MR scanners in order to address the questions of a.) the extent to which myocardial high-energy phosphate (HEP), creatine (Cr), or sodium concentrations change in response to and after transient ischemia or chronic ischemic injury, b.) the extent to which myocardial high-energy phosphates, creatine, or sodium concentrations as well as HEP flux are altered in cardiomyopathic patients with and without/ congestive heart failure, c.) can spatial differences in cardiac metabolites (HEP, Cr) or ions (Na) induced by ischemic injury be identified with novel, non-invasive imaging techniques?

Sodium (NA)At time of MRS

Can non-invasive magnetic resonance imaging and spectroscopy techniques be developed, validated, and implemented on clinical MR scanners in order to address the questions of a.) the extent to which myocardial high-energy phosphate (HEP), creatine (Cr), or sodium concentrations change in response to and after transient ischemia or chronic ischemic injury, b.) the extent to which myocardial high-energy phosphates, creatine, or sodium concentrations as well as HEP flux are altered in cardiomyopathic patients with and without/ congestive heart failure, c.) can spatial differences in cardiac metabolites (HEP, Cr) or ions (Na) induced by ischemic injury be identified with novel, non-invasive imaging techniques?

31P distribution or metabolite mapAt time of MRS

Can non-invasive magnetic resonance imaging and spectroscopy techniques be developed, validated, and implemented on clinical MR scanners in order to address the questions of a.) the extent to which myocardial high-energy phosphate (HEP), creatine (Cr), or sodium concentrations change in response to and after transient ischemia or chronic ischemic injury, b.) the extent to which myocardial high-energy phosphates, creatine, or sodium concentrations as well as HEP flux are altered in cardiomyopathic patients with and without/ congestive heart failure, c.) can spatial differences in cardiac metabolites (HEP, Cr) or ions (Na) induced by ischemic injury be identified with novel, non-invasive imaging techniques?

ATP fluxAt time of MRS

Can non-invasive magnetic resonance imaging and spectroscopy techniques be developed, validated, and implemented on clinical MR scanners in order to address the questions of a.) the extent to which myocardial high-energy phosphate (HEP), creatine (Cr), or sodium concentrations change in response to and after transient ischemia or chronic ischemic injury, b.) the extent to which myocardial high-energy phosphates, creatine, or sodium concentrations as well as HEP flux are altered in cardiomyopathic patients with and without/ congestive heart failure, c.) can spatial differences in cardiac metabolites (HEP, Cr) or ions (Na) induced by ischemic injury be identified with novel, non-invasive imaging techniques?

23Na distribution or metabolite mapAt time of MRS

Can non-invasive magnetic resonance imaging and spectroscopy techniques be developed, validated, and implemented on clinical MR scanners in order to address the questions of a.) the extent to which myocardial high-energy phosphate (HEP), creatine (Cr), or sodium concentrations change in response to and after transient ischemia or chronic ischemic injury, b.) the extent to which myocardial high-energy phosphates, creatine, or sodium concentrations as well as HEP flux are altered in cardiomyopathic patients with and without/ congestive heart failure, c.) can spatial differences in cardiac metabolites (HEP, Cr) or ions (Na) induced by ischemic injury be identified with novel, non-invasive imaging techniques?

CR distribution or metabolite mapAt time of MRS

Can non-invasive magnetic resonance imaging and spectroscopy techniques be developed, validated, and implemented on clinical MR scanners in order to address the questions of a.) the extent to which myocardial high-energy phosphate (HEP), creatine (Cr), or sodium concentrations change in response to and after transient ischemia or chronic ischemic injury, b.) the extent to which myocardial high-energy phosphates, creatine, or sodium concentrations as well as HEP flux are altered in cardiomyopathic patients with and without/ congestive heart failure, c.) can spatial differences in cardiac metabolites (HEP, Cr) or ions (Na) induced by ischemic injury be identified with novel, non-invasive imaging techniques?

Trial Locations

Locations (1)

Johns Hopkins Medical Institutions

🇺🇸

Baltimore, Maryland, United States

© Copyright 2025. All Rights Reserved by MedPath