MedPath

TCD Detection of Gas and Solid Micro-Emboli in Patients Undergoing Coronary Artery Bypass Grafting (CABG): The Influence of Proximal Anastomosis Technique

Not Applicable
Conditions
Intracranial Embolism and Thrombosis
Postoperative Complications
Registration Number
NCT00294814
Lead Sponsor
Rambam Health Care Campus
Brief Summary

The purpose of this study is to test the hypothesis that using three different techniques to anastomose coronary grafts to the aorta: partial occlusion, single cross clamp, or using the Heartstring anastomotic device, will change the amount of gas and solid microemboli as detected by the EmbodopR transcranial Doppler (TCD) system and consequently the neurocognitive performance of patients after coronary bypass operation.

Detailed Description

It is not uncommon for a cardiac surgical patient to have his heart fixed but his brain damaged. Sometimes the damage is overt and manifests itself as a major neurological deficiency. The frequency of stroke, the so called type 1 damage, is reported to be between 1 and 4 percent. This may increase mortality from 1.4% to 22% and hospitalization from 6.6 days to 17.5 days. Diffuse encephalopathy, presenting as delirium, confusion, coma and seizures, so called type 2 damage, is reported to appear in a much higher frequency of 3% to 7%, depending on timing and methods of evaluation. This type of damage will increase mortality from 1.4% to 7.5% and hospitalization from 6.6% to 15.2%. Sometimes it is more subtle and appears as neurocognitive decline. This type of damage may be found in 53% of the patients at discharge, in 24% after six months and the frequency rises again to 42% at five years. The impact on the patient and his family might be devastating and the burden on the medical system and society enormous. Long term, moderate to severe disability may affect 69% of the stroke patients and survival may decline to 67% after one year.

After years of research efforts it became evident that inadequate global blood flow to the brain is relatively uncommon and cerebral hemorrhage is a rare cause of brain damage during cardiac operations. It also became evident that one of the most important damage mechanisms is embolization to the brain and the inflammatory response which amplifies the ischemic embolic damage. Looking for possible embolic sources by monitoring embolic signals (HITS) on the transcranial doppler (TCD) tracings, researchers found that manipulation of the aorta during cardiac surgery, like cannulation and especially clamping is a major source of emboli. Using the side biting clamp while performing proximal anastomosis has the potential to crush the aortic wall and release macro and micro emboli especially when the aorta is atherosclerotic. Using a single cross clamp technique might eliminate the aortic wall solid debris but introduce air emboli instead.

Dealing with the same problem, a few proximal anastomotic devices have been introduced and most of them withdrawn from the market because of inferior patency rate. The Heartstring proximal anastomotic device is one of the recently introduced devices for which early good patency rate has been demonstrated. The advantages, in terms of less brain embolization or improved neurologic outcome, have never been demonstrated for the Heartstring or any other anastomotic device.

A recent potential breakthrough in this field of emboli research and prevention in order to improve neurologic outcome after cardiac surgery is the introduction of the EmbodopR system by DWL. This is a high quality TCD system which has been further developed to monitor cerebral emboli. It contains a module which automatically screens every event suspected as embolic, eliminates those recognized as artifacts according to four different criteria and records only real embolic events. Another module can differentiate every event as gas or solid emboli by simultaneously insonating the middle cerebral artery blood with tow ultrasound beams, each of different frequency. The result is a new ability for real time monitoring and characterization of embolic events during cardiac operations.

Recruitment & Eligibility

Status
UNKNOWN
Sex
All
Target Recruitment
100
Inclusion Criteria
  • Patients hospitalized for surgical coronary revascularization at the Department of Cardiac Surgery of Rambam Medical Center, Haifa, Israel.
  • Patients should be conscious and cooperative to perform neurocognitive evaluation.
Exclusion Criteria
  • Patients that lack "temporal window" for TCD monitoring will be excluded.

Study & Design

Study Type
INTERVENTIONAL
Study Design
PARALLEL
Primary Outcome Measures
NameTimeMethod
Number of gas\solid microemboli detected by TCD
Neurocognitive performance
Secondary Outcome Measures
NameTimeMethod
Mortality
Organ failure (including brain damage)
Intensive care unit (ICU) length of stay\hospitalization

Trial Locations

Locations (1)

Dr Zvi Adler

🇮🇱

Haifa., Israel

Dr Zvi Adler
🇮🇱Haifa., Israel
Zvi Adler, MD
Contact
972-50-2061069
z_adler@rambam.health.gov.il
Majed Kabaha, MD
Principal Investigator
Sammer Diab, MD, PhD
Sub Investigator

MedPath

Empowering clinical research with data-driven insights and AI-powered tools.

© 2025 MedPath, Inc. All rights reserved.