Mobile Medical Application for Cost-effective Strabismus Screening
- Conditions
- Strabismus
- Registration Number
- NCT03450980
- Lead Sponsor
- Massachusetts Eye and Ear Infirmary
- Brief Summary
Develop and evaluate a new smartphone based app to screen for and measure eye misalignment (strabismus). The investigators will validate the app against simulated strabismus of known magnitude and common clinical tests. They will evaluate the app as a screening tool in high risk populations, to determine the sensitivity and specificity. They hypothesize that the app can measure to within 2 units (prism diopters) of the ground truth, and that it will be correlated with gold standard tests.
- Detailed Description
The goal of the proposed project is the development and evaluation of a novel mobile medical application for the detection and monitoring of strabismus (eye misalignment). The image analysis technology necessary to measure strabismus using the corneal reflection technique (Photographic Hirschberg Test) has been available for many decades, however it has never been deployed using a smart phone. A smart phone platform will eliminate barriers of cost (since the hardware is maintained and updated by the smart phone industry), leading to rapid wide spread application and allowing the technology to finally reach its potential level of impact for children's eye care in the detection and management of strabismus. Strabismus causes visual confusion and double vision which ultimately results in the brain suppressing vision from the deviated eye. In children this results in under-development (amblyopia) with permanent vision loss in the deviated eye if not detected and treated at a young age. Strabismus in children is also associated with coordination problems such as postural instability and severe social disadvantages. Strabismus develops in an estimated 3-8% of children in the U.S. The prototype smart phone app (Referred to here as the Mobile Eye Alignment App - MEAA), uses photographic analysis of the corneal reflection (Purkinjie image) generated by the smart phone camera flash. The corneal reflection method uses the displacement of the reflection from the center of the pupil in the deviated eye to calculate the amount of eye misalignment. This measurement technique will be deployed for the proposed project using the hardware of the iPhone, a popular phone with an iOS operating system. Preliminary results suggest the app can measure differences in eye alignment of 1.6° (2.8 prism diopters). If successfully developed, the app has potential to be utilized to advance pediatric strabismus research by facilitating and reducing the cost of collecting enormous amounts of data from the general population and under-served or remote populations for epidemiological studies, and allowing researchers to capture eye alignment data much more frequently than is currently possible. Such a tool could better delineate the natural history of strabismus and perhaps help determine its causes. While devices are available which could make these measurements, the costs are prohibitively high (\>$3,000 ea.) and will not reach the widespread availability of smart phones. Clinical goals for the app are to provide eye doctors with an objective measurement tool in the exam room, allow daily monitoring of treatment effects, and eventually to be used as a screening tool by school nurses, pediatricians, and parents. The barriers to market success of stand-alone devices is not the accuracy sensitivity or specificity of photographic analysis technique which has been reported with sensitivity from 53% to near 90% and specificity ranging from 76% to 94% for strabismus detection. Impact of strabismus screening for the young - Early detection for strabismus in young children, especially during the critical period up to 2 years of age, is important to ensure that treatment is administered as soon as possible. The success of amblyopia treatment depends on several factors, but principally on the age of onset and the age at which the treatment is initiated. Therapy for amblyopia is maximally effective if started before age 3 and can be initiated as early as 8 months, underscoring the critical need for early and widespread access to strabismus screening. Indeed, countries with long-standing early vision screening programs have reported significantly reduced rates of amblyopia. Access to strabismus screening is also important for older, school age children (age 7-17) suffering from amblyopia, for whom treatment can lead to significant improvements in visual acuity ranging from 20%-70% of patients, depending on their age bracket.
Aims
AIM 1:
Develop and test key functionality of the strabismus app by comparing measurements with successive versions of the prototype app to known angles of eye deviation (non-strabismic volunteers will gaze at off axis targets of known eccentricity).
AIM 2:
Evaluate the strabismus app accuracy and feasibility in participants with strabismus tested with both the app and clinical methods and analyzed for levels of agreement.
Primary Hypothesis: For strabismus ranging from 1 to 30 prism diopters (target range), the optimized version of the app will provide measurements which are highly correlated with the ground truth (simulated strabismus) or clinical tests of eye alignment.
Recruitment & Eligibility
- Status
- COMPLETED
- Sex
- All
- Target Recruitment
- 91
Ground Truth Aim Study:
- Age 18 to 88 years
- Normal or corrected to normal vision
Clinical Aim Study:
- Ages 18 to 88
- Strabismus
- Able to keep looking at a visual target for 30-60 seconds
Ground Truth Aim Study:
- Age less than 18 years or greater than 88.
Clinical Study:
- Age less than 18 or greater than 88
- Inability to keep looking at a visual target for 30-60 seconds
Study & Design
- Study Type
- OBSERVATIONAL
- Study Design
- Not specified
- Primary Outcome Measures
Name Time Method Comparison of App-measured Eye Deviation Angles to Gold Standard 15 minutes Linear regression analysis was used to compare the app measurements of strabismus angle to ground truth and gold standard measures. The outcome measure is the difference between the two methods, in terms of least square mean (LSM).
- Secondary Outcome Measures
Name Time Method
Trial Locations
- Locations (1)
Ophthalmology of Clinical Research Office, Mass Eye and Ear
🇺🇸Boston, Massachusetts, United States
Ophthalmology of Clinical Research Office, Mass Eye and Ear🇺🇸Boston, Massachusetts, United StatesJan Trott, BSContact617-573-6060ophthalmologyclinicalresearch@meei.harvard.eduKevin HoustonContact617-912-2525kevin_houston@meei.harvard.eduKevin E Houston, O.D., M.Sc.Principal Investigator