MedPath

Intraoperative OCT Guidance of Intraocular Surgery

Completed
Conditions
Eye Manifestations
Registration Number
NCT01588041
Lead Sponsor
Duke University
Brief Summary

The purpose of this study is to investigate the use of optical coherence tomography imaging integrated with an operating microscope (MIOCT) in ophthalmic surgeries.

Detailed Description

Optical Coherence Tomography (OCT) is used to capture reproducible ocular morphology and cross-sectional tissue measurements in-vivo in a rapid, non-invasive, non-contact manner. It has displaced ophthalmoscopy and stereo photography for clinical assessment and documentation of retinal microanatomy including thickness, cystoid structures, subretinal fluid and retinal traction.(1) Spectral Domain Optical Coherence Tomography (SDOCT) has the speed and resolution required for real-time noninvasive three-dimensional imaging of critical pathology.

While modern ophthalmic surgery has benefited from rapid advances in instrumentation and techniques (2-6), the basic principles of the stereo zoom operating microscope have not changed (except for increased automation) since the 1930's. (7-9) The ability to better resolve tissue microanatomy through real-time micro-imaging would have a dramatic impact on ophthalmic surgeon's capabilities, foster the development of new surgical techniques, and potentially improve surgical outcomes.

Complementary to microscope integrated OCT (MIOCT) testing, we use a commercial hand-held SDOCT instrument (Bioptigen, Inc.) during pauses in both anterior segment and retinal surgery to document surgical process.

While both the handheld instrument and Duke's Generation 1 (G1) MIOCT prototype have demonstrated that high-quality OCT imaging is possible during surgery, in both cases control of the OCT scan location and display of the real-time image data are managed on the OCT system console, located up to several feet from the surgeon. Thus, the potential dramatic impact of this technology on ophthalmic surgery is constrained by its limited integration with the surgical environment. The primary technical goal of this project is to address this issue through novel advances in OCT technology, automated tracking of surgical instruments and tools, and fusion of OCT controls, images and measurements into a seamless interface for the surgeon.

This study will facilitate future quality improvement processes based on intraoperative data matched to postoperative outcomes. Intraoperative OCT feedback will revolutionize communication in surgical research, clinical communication, surgeon training and continuing education, and will provide measurable data regarding disease patterns and intraoperative response, novel instrument and adjuvant use.

This study will prospectively examine the surgical utility of MIOCT in retinal and anterior segment surgery. A total of 722 subjects will be enrolled at 2 sites, Duke Eye Center and Cole Eye Institute. Of those, there will be 500 retina subjects and 222 anterior segment subjects. There will be a small number of normal subjects, who are not undergoing eye surgery, enrolled in this portion of this study for non-surgical study of the MIOCT system imaging, particularly for Generation 2 (G2) MIOCT. Rate of recruitment: 460 retina subjects will be enrolled at the rate of approximately 115 per year (\~57 per year at both Duke and Cole) for years 1-4 and approximately 40 subjects will be enrolled in year 5 (adding up to a total of 500 subjects).

Recruitment & Eligibility

Status
COMPLETED
Sex
All
Target Recruitment
269
Inclusion Criteria

Not provided

Read More
Exclusion Criteria

Not provided

Read More

Study & Design

Study Type
OBSERVATIONAL
Study Design
Not specified
Primary Outcome Measures
NameTimeMethod
Test and provide feedback on the intraoperative system both in laboratory and then in the operating room.8.5 years

The primary outcome of this project is to integrate optical coherence tomography (OCT) with the surgical environment through novel advances in OCT technology, automated tracking of surgical instruments and tools, and fusion of OCT controls, images and measurements into a seamless interface for the surgeon.

Secondary Outcome Measures
NameTimeMethod

Trial Locations

Locations (2)

Duke University Eye Center

🇺🇸

Durham, North Carolina, United States

Cole Eye Institute at the Cleveland Clinic Lemer College of Medicine

🇺🇸

Cleveland, Ohio, United States

© Copyright 2025. All Rights Reserved by MedPath