MedPath

Automated Segmentation and Volumetry for Meningioma Using Deep Learning

Completed
Conditions
Artificial Intelligence
Meningioma
Registration Number
NCT05093751
Lead Sponsor
Seoul National University Hospital
Brief Summary

U-Net-based architectures will be applied to 500 contrast-enhanced axial MR images of different patients from a single institution after manual segmentation of meningioma, of which 50 were used for testing. Tumor volumetry after autosegmentation by trained U-Net-based architecture is final goal.

Detailed Description

U-Net-based architectures will be applied to 500 contrast-enhanced axial MR images of different patients from a single institution after manual segmentation of meningioma, of which 50 were used for testing. After preprocessing with Z-isotropification and intensity normalization of images, 3 U-Net-based networks (2D U-Net, Attention U-Net, 3D U-Net) and 3 nnU-Net-based networks (2D nnU-Net, Attention nnU-Net, 3D nnU-Net) will be trained with meningioma-segmented images. For applying to 3D networks, sagittal and coronal images will be reconstructed using axial images. After prediction, the cut-off of the probability function, which is a trade-off, will be obtained with the Gaussian Mixture Modeling algorithm using the probability density function. The voxels having a probability function higher than that will be finally predicted as meningioma. Tumor volume is calculated as the sum of the product of segmented area and thickness of axial images. For performance evaluation, dice similarity coefficient (DSC), precision, and recall will be evaluated compared with manually segmented voxels for validation datasets. The results of volumetry of each model will be compared with manual segmentation-based volume through Pearson's correlation analysis.

Recruitment & Eligibility

Status
COMPLETED
Sex
All
Target Recruitment
600
Inclusion Criteria
  • Radiologically diagnosed meningioma by MRI
Exclusion Criteria
  • under 18 years old
  • Multiple meningiomas
  • Orbital meningioma
  • Any prior treatment for intracranial meningioma before registration

Study & Design

Study Type
OBSERVATIONAL
Study Design
Not specified
Primary Outcome Measures
NameTimeMethod
Accuracy compared with ground truth10-01-2020 until 09-30-2021

As a primary endpoint, we will examine the ability of U-Net and nnU-Net to segment meningioma in brain MR compared with ground truth. Ground truth is defined as area on MR drawn by two neurosurgeons. Accuracy of autosegmentation of meningioma will be assessed in dice similarity coefficient, recall, and precision.

Secondary Outcome Measures
NameTimeMethod

MedPath

Empowering clinical research with data-driven insights and AI-powered tools.

© 2025 MedPath, Inc. All rights reserved.